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Abstract

Given the growing availability of large datasets, we propose the spatio-temporal autore-
gressive distributed lag (STARDL) model which allows spatial and temporal coefficients to
differ jointly across the spatial units. Our model encompasses the widely used spatial dynamic
panel data models as well as the heterogeneous spatial autoregressive model recently proposed
by Aquaro, Bailey and Pesaran (2019), the only paper in considering heterogeneous spatial
parameters. To deal with the simultaneity arising from spatial-lagged dependent variables, we
develop both QML-based and control function-based STARDL estimators, which are shown to
be consistent and asymptotically normally distributed when the time dimension is large, irre-
spective of whether the number of the spatial units is large or not. Furthermore, by deriving
the system dynamic spatial panel data representation, we can develop the diffusion multipli-
ers that can capture adjustments as well as dynamic network connectedness from initial to
new equilibrium following an economic perturbation in a flexible manner. The utility of our
proposed STARDL models is demonstrated by Monte Carlo studies as well as the empirical
application to the Iraqi war casualties during 2003–2010.
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1 Introduction

The ability of spatial econometric models to capture co-dependencies across a known terrain or
network at relatively low parametric cost has proved highly attractive to economists, economic
geographers and regional scientists. Following early work by Cliff and Ord (1973), Upton and
Fingleton (1985), Anselin (1988), Cressie (1993), Kelejian and Robinson (1993) these models have
been used in a wide range of applications. The popular spatial autoregressive model imposes the
restriction that spatial spill-overs flow only through the dependent variable but more general forms
allowing the explanatory variables of one unit to impact the dependent variable of another directly,
such as the spatial Durbin model, are also widely used. Investigating identification in spatial Durbin
models under both instrumental variable and maximum likelihood estimation, Lee and Yu (2016)
show that significant biases can arise if relevant Durbin terms are omitted while their unnecessary
inclusion causes no material loss of efficiency. Our model is in the spirit of the spatial Durbin model
but generalises it to include time as well as spatial lags.

Much of the early work on spatial models was done with large cross-section dimensions in mind
but, given the growing availability of spatial datasets with a large time dimension, it is of interest to
explore time dynamics in greater detail. Imposing a static model on data with a time dimension is,
in effect, assuming that the spatial system is only observed on (or relatively close to) its equilibrium
path and thereby misses the opportunity to study of the transition between equilibria that might
be afforded by regular data collection. In this respect our work mirrors recent interest in dynamic
spatial models, see Elhorst (2014) for an overview, with the spatial panel data model, see Anselin
et al. (2009), Baltagi et al. (2003), Lee and Yu (2011), among others. Yu et al. (2008) study
the stable spatial dynamic panel data model, featuring individual time lags, spatial time lags and
contemporaneous spatial lags. Maximum likelihood estimation requires bias correction when the
time dimension is small but alternative approaches, using time lags as instrumental variables, are
available. Elhorst (2010) uses Monte Carlo studies to investigate small sample performances of
various estimators. While these endow the system with some temporal memory they are incapable
of capturing the dynamics seen in many economic series. We therefore propose to generalise the
spatial panel model to higher-order temporal dynamics through the spatial-temporal autoregressive
distributed lag (STARDL) model. In time series econometrics, the autoregressive distributed lag
(ARDL) model has proved an extremely effective tool for both the estimation of dynamic parameters
and for understanding the interaction of variables over time, becoming widely used to differentiate
short-run and long-run behaviour, see Pesaran and Shin (1998), Pesaran et al. (2001) and Shin et
al. (2014). We adopt this approach in the novel context of spatially correlated data.

A significant drawback to spatial models is that the spatial weighting matrix must be known
a priori. A range of methods have been used to construct weighting matrices in applied work,
including contiguity, inverse distance or measures of similarity, and researchers must decide how
and whether to normalise. When, as in the overwhelming majority of cases, a common spatial
parameter is used this matrix determines not only which units are to be considered as neighbours
and their relative importance but also the relative intensity with which each unit is influenced by
its neighbours. Only the general intensity of transmission within the system is left to be estimated;
the relative degree of openness to transmission or susceptibility to external influence of each unit
is assumed known.

We follow a recent paper by Aquaro, Bailey and Pesaran (2015, hereafter ABP), which is unusual
in allowing heterogeneous spatial lag parameters, although our model is more general in allowing for
time dynamics and also encompasses the widely used spatial Durbin model as a special case. This
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relaxation offers a number of advantages. Firstly, the predictions of the model are invariant to any
row-normalisation of the spatial weighting matrix, in the sense that the residuals are not affected
by multiplying the spatial weights of the neighbours and dividing the spatial coefficient of unit i
by an arbitrary constant. Secondly it enables the researcher to estimate the relative openness of
each spatial unit. As is common in spatial models, our set up assumes that the relative importance
of different neighbours is known while leaving the importance of the spatial effect relative to other
influences and relative to other spatial units to be estimated.

Allowing for parameter heterogeneity raises significant complications for estimation and inter-
pretation that this paper addresses. As some simultaneity is inevitable in spatial models, we develop
a quasi-maximum likelihood (QML) estimator and a control function estimator utilising internal
instruments. QML techniques, based around a transformation of the data, were developed by
Ord (1975), Cliff and Ord (1981) and Anselin (1980) among others and the asymptotic properties
studied rigorously in Lee (2004). The evaluation of the quasi-likelihood requires calculation of a
Jacobian of a matrix which grows with the cross-section dimension, typically by calculating the
eigenvalues of the weighting matrix. As pointed out by Kelejian and Prucha (1998), this becomes
computationally difficult for large cross-sections and the problem is exacerbated by heterogeneity
across the spatial parameters. In the light of these difficulties we also develop an alternative control
function approach, following the instrumental variables/ method of moments approach that has
been developed by Anselin (1980), Kelejian and Robinson (1993), Kelejian and Prucha (1998, 1999,
2004), Lee and Liu (2010), Lee and Yu (2014) and Kuersteiner and Prucha (2018). The choice of
the optimal set of instruments are also discussed in Anselin (1980), Land and Deane (1992) and
Lee (2003). Importantly, the presence of time and spatial correlation equips our model with a
greater variety of instruments, which we exploit in developing the estimator of the parameters. We
undertake an asymptotic analysis of both estimators, establishing conditions for the stability of the
model and the identification of the parameters and show that, under certain conditions they are
consistent and normally distributed asymptotically.

We explore the properties of both the QML and control function estimators in a Monte Carlo
simulation. Our results indicate that both methods provide good estimates in finite samples in terms
of bias and root mean square error. The results are largely unaffected by increases in the cross-
sections dimension, with the control function providing a far easier algorithm to implement. The
control function estimator is also shown to be robust to heteroskedasticity and to time dependence
in the regressor, while the QML estimator has the lower root mean square error. We investigate both
methods using different row-normalised weighting matrices and find that performance is maintained
regardless of its sparsity.

While offering useful flexibility, heterogeneity across a large number of units can make the
meaningful interpretation of results difficult. In contrast to homogeneous parameter models, where
interest often centres on the single spatial parameter, here we have numerous parameters performing
complementary roles within the network. Another contribution of this paper is in developing a
comprehensible and widely applicable format for the presentation of estimation results alongside
the tools to analyse the evolving importance of particular nodes. We avoid the use of potentially
misleading mean group estimators and instead provide two quantities, based on work by Shin
et al. (2014) and Greenwood-Nimmo, Nguyen and Shin (2015): the individual spatio-temporal
dynamic multipliers; and, the system diffusion multipliers, leading to our network connectedness
matrix, each of which exists for a range of time horizons. The network connectedness matrices
form a sequence of output network matrices resulting from the input network matrix, W , and the
STARDL coefficients. They also give rise to two intuitive measures of the developing role of each
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node within the network: their external motivation, reflecting the extent to, and direction in, which
they are steered by the network; and, their systemic influence, reflecting their relative importance
within it.

We then demonstrate the usefulness of our approach in an empirical application considering the
effect of enemy casualties on civilian deaths across the 18 governorates of Iraq in the period following
the 2003 invasion. The period in question was characterised by an armed insurgency in which mobile
militias, provoked by conditions across the country, were drawn to particular hotspots but then
able to relocate to supportive conditions when threatened by coalition forces. The time and spatial
contamination we find is consistent with the use of violence against civilians as a means to maintain
influence in the nascent political institutions as well as in retribution for past acts. Our network
connectedness measures highlight the importance of the capital, Baghdad, as a net propagator of
violence against civilians, in particular to the Shia centre of Basrah and to the governorate of Diyala.
At the same time, many other governorates had strong institutions throughout the period and were
able to maintain relatively high levels of security, even when geographically positioned between two
hotspots. Our use of heterogenous coefficients has a considerable advantage in modelling the range
of effects the network had on different provinces over different time horizons.

The structure of the paper is as follows. Section 2 presents the basic specification of the model
and discusses in detail its underlying properties. Two estimators and their asymptotic distributions
are discussed in section 3, which then considers some extensions to the basic framework. Section 4
develops the spatio-temporal dynamic and diffusion multipliers and discusses their use in measures of
network connectedness. Section 5 presents Monte Carlo simulation evidence of the control function
and the QML estimators. Section 6 demonstrates the utility of our proposed models, providing
an empirical illustration analysing the time and cross sectional dependence between civilian and
military casualties during the aftermath of the 2003 Iraq war. Section 7 concludes. Aall proofs and
further details of the estimators are relegated to the Appendix.

2 The STARDL Model

Consider the spatio-temporal autoregressive distributed lag model of order p and q with the het-
erogeneous parameters (STARDL(p, q) for short):

yit =

p∑
`=1

φi`yi,t−` +

p∑
`=0

φ∗i`y
∗
i,t−` +

q∑
`=0

π′i`xi,t−` +

q∑
`=0

π∗′i`x
∗
i,t−` + αi + uit, (1)

for i = 1, . . . , N and t = 1, . . . , T , where yit is the scalar dependent variable of the ith spatial unit
at time t, xit = (x1

it, ..., x
K
it )′ is a K × 1 vector of exogenous regressors with a K × 1 vector of

parameters, π0 = (π1
0 , ..., π

K
0 )′. Similarly for yi,t−` and xi,t−`. Spatial interactions between units,

both contemporaneously and with lags, are captured via the spatial variables, y∗it and x∗it, defined
by

y∗it ≡
N∑
j=1

wijyjt = w′iyt with yt
N×1

= (y1t, ..., yNt)
′
, (2)

x∗it
K×1

=
(
x1∗
it , ..., x

K∗
it

)′ ≡
 N∑
j=1

wijx
1
jt, ...,

N∑
j=1

wijx
K
jt

′ = (w′i ⊗ IK)xt; xt
NK×1

=

 x1t

...
xNt

 (3)
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where w′i = (wi1, ..., wiN ) denotes a 1 × N vector of (non-stochastic) spatial weights determined
a priori with wii = 0. Notice that the specification in (1) is sufficiently general by controlling for
fixed effects through individual-specific intercepts, αi.

The STARDL(p, q) specification in (1) reveals information on both time and spatial dependence.
If φi`’s and πi`’s are statistically significant, this points to the usual temporal dynamics. In addition,
if φ∗i`’s (the spatial interaction effect) and π∗i`’s (the contextual effect in terms of Manski (1993))
are statistically significant, this indicates an importance of spatial dependence as well as spatio-
temporal or diffusion dynamics.

Stacking the N individual STARDL(p, q) regressions (1), we have the following system spatial
representation:

yt =

p∑
`=1

Φ`yt−` +

p∑
`=0

Φ∗`Wyt−` +

q∑
`=0

Π`xt−` +

q∑
`=0

Π∗` (W ⊗ IK)xt−` +α+ ut, (4)

where W is the N ×N (non-stochastic) spatial weight or network matrix that characterises all the
connections given by

W =

 w11 · · · w1N

...
. . .

...
wN1 · · · wNN

 =

 w′1
...
w′N

 , (5)

α = (α1, ..., αN )
′

and Φ`, Φ∗` , Π`, Π∗` are diagonal matrices:

Φ`
N×N

=

 φ1` · · · 0
...

. . .
...

0 · · · φN`

 , ` = 1, ...p; Φ∗`
N×N

=

 φ∗1` · · · 0
...

. . .
...

0 · · · φ∗N`

 , ` = 0, 1, ..., p

Π`
N×NK

=

 π′1` · · · 0
...

. . .
...

0 · · · π′N`

 , Π∗`
N×NK

=

 π∗′1` · · · 0
...

. . .
...

0 · · · π∗′N`

 for ` = 0, 1, ..., q.

The representation in (4) is general and nests a range of popular models seen in the literature.
Consider the special case with homogeneous parameters and with p = q = 1, which corresponds to
the dynamic spatial Durbin model analysed by Lee and Yu (2009) and Elhorst (2012):

yt = φyt−1 +φ∗0Wyt+φ
∗
1Wyt−1 +π0xt+π1xt−1 +π∗0 (W ⊗ IK)xt+π

∗
1 (W ⊗ IK)xt−1 +ut. (6)

In practice it is difficult to provide meaningful interpretation on the homogeneous spatial parame-
ters, especially φ∗0 and φ∗1 as well as π∗0 and π∗1 .1 But our proposed approach can deliver much more
flexible and sensible interpretations by allowing these parameters to be heterogeneous across spa-
tial units. For example, we can allow direct spillovers from neighbouring exogenous variables, e.g.
improved amenities increase house prices in neighbouring areas directly (close to good amenities)
and indirectly (close to an area of rising prices). See also Elhorst (2012) for further discussion of
the issues involved in the identification and estimation of this model.

1Somewhat misleading interpretations of spillover effects will be drawn if homogeneity is imposed falsely.
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To date, only one paper, proposed by ABP, examines the heterogeneous spatial autoregressive
(HSAR) panel data model where the spatial coefficients are allowed to be heterogeneous. ABP
consider the following model:

yit = φ∗i

N∑
j=1

wijyjt + π′ixit + αi + uit. (7)

They derive conditions under which the heterogeneous spatial coefficients are identified and develop
a quasi maximum likelihood (QML) estimation procedure when both the time and cross section
dimensions are large. The STARDL model encompasses the HSAR model, that does not consider
temporal dynamics and diffusion dependence explicitly.

2.1 Stability conditions and assumptions

We rewrite (1) compactly as
yit = φ∗i0y

∗
it + θ′iχit + uit (8)

where χit =
(
yi,t−1, ..., yi,t−p, y

∗
i,t−1, . . . , y

∗
i,t−p,x

′
it, . . . ,x

′
i,t−q,x

∗′
it , . . . ,x

∗′
i,t−q, 1

)′
and θi =

(
φ′i,φ

∗′
i ,π

′
i,π
∗′
i , αi

)′
with φi = (φi1, ..., φip)

′
, φ∗i =

(
φ∗i1, ..., φ

∗
ip

)′
, πi =

(
π′i0, ...,π

′
iq

)′
, π∗i =

(
π∗′i0, ...,π

∗′
iq

)′
. Stacking (8):

yt = Φ∗0Wyt + Θχt + ut (9)

where Φ∗0 = diag (φ∗0) with φ∗0 = (φ∗10, . . . , φ
∗
N0), Θ = diag

(
θ′1, ...,θ

′
N

)
, and χt = (χ′1t, . . . ,χ

′
Nt)
′
.

We begin with the following assumptions:
Assumption 1: The disturbances {uit}, i = 1, . . . , N and t = 1, . . . , T , are independent across

i and t with zero mean, heterogeneous variance σ2
i > 0 but without time dependence, E(uituis) = 0

∀t 6= s. In addition, E |uit|4+ε
<∞ for some ε > 0.

Assumption 2: The true value of
(
φ∗′0 ,θ

′,σ′
)′

lies in the interior of a compact set, where φ∗0 =

(φ∗10, . . . , φ
∗
N0)
′
, θ =

(
φ′1, . . . ,φ

′
p,φ

∗′
1 , . . . ,φ

∗′
p ,π

′
0, . . . ,π

′
q,π

∗′
0 , . . . ,π

∗′
q ,α

′)′, and σ2 =
(
σ2

1 , . . . , σ
2
N

)′
,

Assumption 3: The spatial weights matrix W is non-stochastic with zero diagonals and
uniformly bounded for all N with absolute row and column sums.

Assumption 4: Either : (a) as N →∞, (IN −Φ∗0W )
−1

exists and is uniformly bounded for
all N with uniformly bounded absolute row and column sums; or (b) for bounded N , the eigenvalues
of Φ∗0W lie inside the unit circle such that the matrix S (φ∗0)) ≡ IN − Φ∗0W is invertible for all
φ∗0 ∈ Θφ∗0

, where Θφ∗0
is the compact parameter space.

As a result of Assumption 4, we rewrite equation (4) as

Φ̃ (L)yt = Π̃` (L)xt−` + ũt, (10)

where L denotes the lag operator, Φ̃ (z) = I −
∑p
`=1 Φ̃`z

`, and Π̃` (z) =
∑q
`=0 Π̃`z

` are N × N
a matrix polynomials of order p and q respectively with Φ̃` = (IN −Φ∗0W )

−1
(Φ` + Φ∗`W ),

Π̃` = (IN −Φ∗0W )
−1

[Π` + Π∗` (W ⊗ IK)], and ũt = (IN −Φ∗0W )
−1
ut.

Assumption 5 (Time stability): The roots of the characteristic equation
∣∣∣Φ̃ (z)

∣∣∣ =
∣∣∣IN −∑p

`=1 Φ̃`z
`
∣∣∣

lie outside the unit circle.
Assumption 6: The explanatory variables xit are random variables such that E(‖xit‖4) ≤ C

for all i and t, and they are independent of the idiosyncratic errors ujs for all (i, j, t, s).
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Assumption 1 both limits the probability of extreme values of the disturbance and rules out the
possibility that uit is degenerate for any i = 1, . . . , N . Here we model the time dependence through
time lags of the dependent and explanatory variables such that uit are serially uncorrelated with
E(utu

′
s) ≡ Σu = diag

(
σ2
)

for t = s, and is null otherwise. The more common requirement that
uit be i.i.d. has been weakened to allow cross-section heteroskedasticty. Assumption 2 is standard
in the literature on extremum estimators. Assumption 3 is common within the spatial literature,
containing the normalising convention that no unit acts as its own neighbour and limiting spatial
diffusion so that y∗it and x∗it remain bounded if yjt and xjt are bounded for all i, j = 1, . . . , N and
t = 1, . . . , T .

Assumption 4 is needed to limit the degree of contemporaneous spatial feedback within the sys-
tem, without which it would be possible that the elements of yt and the variance of ut would not be

finite. It ensures that the variance of the disturbance in (10), V ar (ũt) = (I −Φ∗0W )
−1

Σu

(
I −W ′Φ′∗0

)−1

is bounded. The conditions on Φ∗0W under 4(a) are sufficient for those given under 4(b), since we

may write (IN −Φ∗0W )
−1

= IN + Φ∗0W + (Φ∗0W )2 + . . ., and by the properties that all norms
are sub-additive and bounded below by the absolute value of the largest eigenvalue, see Horn and
Johnson (1985, 5.6). If N is bounded (while T →∞), then the expression in 4(b) is equivalent to
4(a). This is not the same as assuming that the (unconditional) variance of yt, is finite, for which
we make Assumption 5, which is a familiar condition from the literature on dynamic systems (e.g.
Hamilton, 1994). Assumption 5 is the necessary condition for a stable relationship existing between
yt and xt.

2 Assumption 5 generalises Assumption 4 in Mutl (2009) and implies that we can rewrite
(10) as an infinite order moving average:

yt = Φ̃ (L)
−1

(
q∑
`=0

Π̃`xt−` + ũt

)
≡
∞∑
`=0

B̃`xt−` +

∞∑
`=0

B`ũt−`, (11)

where B̃ (L)
(

=
∑∞
`=0 B̃`L

`
)

= Φ̃ (L)
−1

Π̃` (L). Then, it follows that the sums
∑∞
`=0 ‖B`‖1 and∑∞

`=0 ‖B`‖∞ are bounded by some constant C, see also Li (2017). Assumption 6 together with

Assumptions 1 and 3 is needed to ensure E(‖χit‖
4
) ≤ C for all i and t, see the Appendix.

3 Estimation and Inference

Following the early work of Cliff and Ord (1973), it is well-known that the endogeneity caused
by contemporaneous spillovers across spatial units makes estimation by ordinary least squares
inconsistent. Quasi-Maximum Likelihood (QML) techniques, based upon a data transformation
removing the endogeneity, have proved popular, see Anselin (1988) and Lee (2004). For applications
in which the number of spatial units is large, however, the computational cost to evaluating the
effect of this transformation on the log likelihood can be prohibitive. An alternative approach
based on the use of moment conditions have been developed using instrumental variables (IV), see
by Kelejian and Prucha (1998, 1999), and the generalised method of moments (GMM), see Elhorst

2There has been a great deal of interest in stationarity of spatial dynamic panel data models (e.g. Lee and Yu,
2010). Let ωi denote an eigenvalue of W , then, for the homogeneous parameter case with p = 1, Assumption 5

reduces to
∣∣∣φ1+φ

∗
1ωi

1−φ∗0ωi

∣∣∣ < 1, ∀i. Lee and Yu (2009) consider row normalised weight matrix, for which maxωi = 1.

When other parameters are in the non-negative but stable region, this simplifies further to
∣∣φ1 + φ∗0 + φ∗1

∣∣ < 1. See
also Elhorst (2014) for a wider set of stability conditions in the homogeneous spatial dynamic panel data models.
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(2010) and Lee and Yu (2014). The growing availability of datasets with both spatial and time
dimension has sparked interest in dynamic spatial panel data models, see Lee and Yu (2014). In
what follows we define r = max {p, q} and T̄ = T − r as the sample size after allowing for required
lags.

3.1 Quasi-Maximum Likelihood Estimation

We denote the parameters in (1), including the error variance as ξ =
(
φ∗′0 ,θ

′,σ2′)′ where θ =(
θ′1, ...,θ

′
N

)′
and σ2 =

(
σ2

1 , ..., σ
2
N

)′
. We use ˜ to denote true value of these parameters, ξ̃ =(

φ̃
∗′
0 , θ̃

′
, σ̃2′

)′
.

Under the specification in (9) alongside Assumptions 1 and 6, the density of yt may be con-
ditioned recursively for t = r + 1, . . . , T on the independent and pre-determined regressors, χt.
Following Lee (2004), the QML estimator can be constructed as the optimiser of the function:

LT̄ (ξ) = −NT̄
2

ln (2π)− T̄

2
ln |Σu|+ T̄ ln |S(φ∗0)| − 1

2

T∑
t=r+1

u′tΣ
−1
u ut. (12)

Since the quasi-likelihood reverts to standard if φ∗0 is known, the closed form solutions for θ and
σ2 given φ∗0 are (see the Appendix for details):

θ̂i(φ
∗
0i) =

(
1

T̄

T∑
t=r+1

χitχ
′
it

)−1(
1

T̄

T∑
t=r+1

χit [yit − φ∗0iy∗it]

)
, (13)

σ̂2
i (φ∗0i) =

1

T̄

T∑
t=r+1

(
yit − φ∗0iy∗it − θ̂i(φ∗0i)′χit

)2

=
1

T̄

T∑
t=r+1

(yit − φ∗0iy∗it)
2

(14)

− 1

T̄

T∑
t=r+1

(yit − φ∗0iy∗it)χ′it

[(
1

T̄

T∑
t=r+1

χitχ
′
it

)]−1

1

T̄

T∑
t=r+1

χit (yit − φ∗0iy∗it) ,

After substituting in, maximising (12) is equivalent to maximising the following concentrated log-
likelihood function:

LcT̄ (φ∗0) = −NT̄
2

ln (2π + 1)− T̄

2

N∑
i=1

ln σ̂2
i (φ∗0i) + T̄ ln |S(φ∗0)| , (15)

and the heterogeneous spatial parameters φ∗0 can be estimated more conveniently by

φ̂
∗
0 = arg max

φ∗0∈Θφ∗0

LcT̄ (φ∗0) .

Consider the following non-stochastic functions of the parameters, based on the (conditional)
expectation of the log-likelihood function.

QT̄ (ξ) = E [LT̄ (φ∗0,θ,Σu)] . (16)
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In order to evaluate this expression, we express S(φ∗0)yt in terms of χt and ut. Define G =

WS−1 = [g1, . . . , gN ]′, with rows g′i = [gi1, . . . , giN ], and S = S
(
φ̃
∗
0

)
. Note that I + Φ̃

∗
0G = S−1

so that
S (φ∗0)S−1 = S−1 −Φ∗0G = I +

(
Φ̃
∗
0 −Φ∗0

)
G,

and hence

S(φ∗0)yt = S (φ∗0)S−1 [Θχt + ut] =
[
I +

(
Φ̃
∗
0 −Φ∗0

)
G
]

Θχt + S (φ∗0)S−1ut.

Let s∗′i (φ∗0i) denote the i’th row of S (φ∗0). Note that the scalar argument reflects independence
from any φ∗0j for j 6= i, which is the result of modelling cross-section dependence through observable
spatial contamination rather than unobserved factors as in Song (2013).

The i’th row of the above relationship can then be written

yit − φ∗i0y∗it = s′i(φ
∗
0i)S

−1 [Θχt + ut] ≡ κit(φ∗i0) + s′i(φ
∗
0i)S

−1ut,

where κit(φ
∗
i0) is reflects the part of (yit − φ∗i0y∗it) driven by the pre-determined variables in the

system, χt, as opposed to the disturbance, s′i(φ
∗
0i)S

−1ut.
For given φ∗0, the values of θ that maximises QT̄ (ξ) is given by

θ̄i(φ
∗
0i) =

(
E

T∑
t=r+1

1

T̄
χitχ

′
it

)−1(
E

1

T̄

T∑
t=r+1

χit [yit − φ∗0iy∗it]

)

=

(
E

1

T̄

T∑
t=r+1

χitχ
′
it

)−1(
E

1

T̄

T∑
t=r+1

χitκit(φ
∗
i0)

)
.

and the value of σ2
i is given by

σ̄2
i (φ∗0i) = E

T∑
t=r+1

1

T̄

{[
yit − φ∗i0y∗it − θ̄

′
i(φ
∗
0i)χit

]′ [
yit − φ∗i0y∗it − θ̄

′
i(φ
∗
0i)χit

]}

= E

T∑
t=r+1

1

T̄


κit(φ∗i0) + s′i(φ

∗
i0)S−1ut −

(
E

1

T̄

T∑
t=r+1

χitκit(φ
∗
i0)

)′(
E

1

T̄

T∑
t=r+1

χitχ
′
it

)−1

χit

2


= E

(
1

T̄

T∑
t=r+1

κit(φ
∗
i0)2

)
+ tr

{
S−1′si(φ

∗
0i)s

′
i(φ
∗
0i)S

−1Σ
}

−E

(
1

T̄

T∑
t=r+1

κit(φ
∗
i0)χ′it

)[
E

(
1

T̄

T∑
t=r+1

χitχ
′
it

)]−1

E

(
1

T̄

T∑
t=r+1

χitκit(φ
∗
i0)

)

Substituting in we have the concentrated expected quasi-likelihood function

QcT̄ (φ∗0) ≡ max
θ,σ2

E
[
LT̄
(
φ∗0,θ,σ

2
)]

= −NT̄
2

ln (2π + 1)− T̄

2

N∑
i=1

ln σ̄2
i (φ∗0i) + T̄ ln |S(φ∗0)| . (17)
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It follows from the definition of S that s′i(φ̃
∗
0i)S

−1 = e′i, the i’th row of the N × N identity
matrix. Hence, at the true parameter value, κit(φ̃

∗
i0) = χ′itθ̃i, which ensures that θ̄i(φ̃

∗
0i) = θ̃i and

σ̄2
i (φ̃∗0i) = σ̃2

i . Away from the true parameter value, however, κit(φ
∗
i0) will be a weighted sum of

χjt, j = 1, . . . , N . In order to identify φ∗i0, we require that κit(φ
∗
i0) is not entirely driven by χit

alone, but depends on χjt for some j 6= i such that the difference between κit(φ
∗
i0) and κit(φ̃

∗
i0)

cannot be bridged by a different choice of θi. This is encapsulated in the following assumption.
Assumption 7: For all φ∗i0 6= φ̃∗i0 and for all i

lim
T→∞

{
E

(
1

T̄

T∑
t=r+1

κit(φ
∗
0i)

2

)

−E

(
T∑

t=r+1

1

T̄
κit(φ

∗
0i)χ

′
it

)[
E

(
1

T̄

T∑
t=r+1

χitχ
′
it

)]−1

E

(
T∑

t=r+1

1

T̄
χitκit(φ

∗
0i)

) > 0.

Assumption 7 mirrors the local identification Assumption 8 in Lee (2004) and Assumption G2 in
Li (2017). It asserts that κit(φ

∗
i0) cannot be co-linear with χit for any value of φ∗0i other than the

true value. This is enough to identify locally the parameter vector φ∗0, given χt, and hence θi and
σ2
i , using the closed form expressions in (13) and (14). Arguments similar to Lee (2004) may be

deployed to establish the following Theorem (see the Appendix).
Theorem 1 (The QML estimator) Consider the STARDL model (8) and suppose that

Assumptions 1-7 hold. Then, as T →∞,√
T̄
(
ξ̂ − ξ̃

)
→d N

(
0, AV ar

(
ξ̂
))

with AV ar
(
ξ̂
)

= H−1
T̄

(
ξ̂
)
J T̄

(
ξ̂
)
H−1

T̄

(
ξ̂
)
,

where

J T̄ (ξ) = − 1

T̄

(
∂L (ξ)

∂ξ

)(
∂L (ξ)

∂ξ

)′
;H T̄ (ξ) = − 1

T̄

∂2L (ξ)

∂ξ∂ξ′
.

Detailed expressions are given in the Appendix.
Even after θ and Σ have been concentrated out of (12), the remaining optimisation over φ∗,

requires repeated evaluation of the determinantN×N matrix, IN−Φ∗0W , making the maximisation
of (12) or (15) numerically burdensome for large N . The technique proposed by Ord (1975), which
greatly simplifies the calculation once the eigenvalues of W have been found, has proved popular
in the estimation of models with a homogeneous spatial autoregressive parameter despite some
potential to become numerically unstable, when N is large and W asymmetric, both of which
are typically true in applied work.3 This technique is not applicable, however, when the spatial
autoregressive parameters are heterogeneous. With this in mind, we consider a computationally
simpler method that exploits the naturally available instruments to control the endogeneity within
(8).

3In the homogeneous case with φ∗i0 = φ∗0, for all i |S(Φ∗
0)| =

∏n
i=1(1−φ∗0ωi), where the ωi are eigenvalues of W .
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3.2 Control Function Estimation

We adopt a control function (CF) approach to instrumenting for the endogeneity in (8).4 Let zit
be the L× 1 vector of exogenous/pre-determined variables:

zit =
(
χ′it, z

2′
it

)′
where the L1 × 1 vector, χit contains all all exogenous and pre-determined variables included in
(8). The L2×1 vector z2

it contains additional pre-determined variables related to y∗it but not to uit
with L2 ≥ 1, such as higher orders of spatial and time lagged variables in χit (see Section 3.2.1).

Assumption 7’: For each i = 1, . . . , N there exist a vector, z2′
it such that (z2

ituit) is a stationary

and ergodic martingale difference sequence, limT→∞

{
E
(

1
T̄

∑T
t=r+1 z

2
ity
∗
it

)}
6= 0 and for all L2

vectors γ 6= 0

lim
T→∞

{
E

(
1

T̄

T∑
t=r+1

γ′z2
itz

2′
itγ

)

−E

(
T∑

t=r+1

1

T̄
γ′z2

itχ
′
it

)[
E

(
1

T̄

T∑
t=r+1

χitχ
′
it

)]−1

E

(
T∑

t=r+1

1

T̄
χitz

2′
itγ

) > 0.

Assumption 7’ carries the usual condition that z2
it is asymptotically correlated with y∗it but

is not asymptotically linearly dependent on χit. Whereas Assumption 7 asserted that κ(φ∗i0), a
linear combination (depending on φ∗i0) of χt was not asymptotically linearly dependent on χit,
Assumption 7’ allows for a wider choice of variables to be used, including higher orders of time lag
which do not feature in κ(φ∗i0).

We now run the reduced form regression of y∗it on zit

y∗it = ϕ′izit + vit with E (z′itvit) = 0 (18)

Then, apply the linear projection of uit on vit as follows:

uit = ρivit + eit (19)

where ρi = E (vituit) /E
(
v2
it

)
. By construction, E (z′iteit) = 0 and E (viteit) = 0. The endogeneity

is now fully reflected in E (vituit) since from (18) we have:

Cov (y∗it, uit) = Cov (ϕ′izit, uit) + Cov (vit, uit) = Cov (vit, uit) .

Replacing uit by (19), we obtain the following transformation of (8):

yit = φ∗i0y
∗
it + θ′iχit + ρivit + eit (20)

where vit is the control variable, rendering the new error terms, eit uncorrelated with y∗it as well as
with vit and other regressors in (20).

4Most linear models are estimated using IV methods – two stage least squares (2SLS). The CF approach relies
on the same kinds of identification conditions. However, in models with non-linearities or random coefficients, the
form of exogeneity is stronger and more restrictions are imposed on the reduced forms.
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We propose the two-step procedure: (i) obtain the reduced form residuals, v̂it = y∗it−ϕ̂
′
izit from

(18) and (ii) run the following regression:

yit = φ∗i0y
∗
it + θ′iχit + ρiv̂it + e∗it (21)

where e∗it = eit + ρi (ϕi − ϕ̂i)
′
zit depends on the sampling error in ϕ̂i unless ρi = 0 (exogeneity

test). Then, the OLS estimator of the parameters in (21) will be consistent. OLS standard errors
will not be consistent, however, due to the presence of an estimated regressor in v̂it. We refer this
estimator to as the STARDL-CF estimator. We note in passing that the practical advantage of
the CF approach mainly lies in preserving the structural parameters in (1), which will be used for
conducting the dynamic counterfactual analysis below. The distribution of the control function
estimator is given in the following Theorem.

Theorem 2 (The CF estimator) Under Assumptions 1-6 and 7’, as T → ∞, the OLS

estimator of βi =
(
φ∗i0,θ

′
i

)′
in (21) is consistent and asymptotically normally distributed as√

T̄
(
β̂i − β̃i

)
)→d N

(
0, AV ar

(
β̂i

))
,

AV ar
(
β̂i

)
→p σ̂

2
i

(
T∑

t=r+1

X̃itX̃
′
it

)−1

,

where X̃
′
it =

(
y∗i,t − v̂it,χ′it

)
and σ̂2

i = T̄−1
∑T
t=r+1 û

2
it, where ûit = êit + v̂itρ̂ and ρ̂ is the OLS

estimate of ρ from (21).
It is not too surprising that the same

√
T rate of consistency also applies to the control function

estimator. The expression for the variance follows from the cross-section heteroskedaticity assump-
tion on the disturbances made in Assumption 1. The estimator would remain consistent if time
heteroskedasticity were allowed, in which case

AV ar
(
β̂i

)
→p

(
T∑

t=r+1

X̃itX̃
′
it

)−1( T∑
t=r+1

û2
itX̃itX̃

′
it

)(
T∑

t=r+1

X̃itX̃
′
it

)−1

.

• YC: which AV ar do we use in the simulation and application? The first one or the
2nd? As mentioned by Francesco, what’s the comparison between the asymptotic
distributions of QML and CF estimators?

Conversely, Assumption 1 could be strengthened to cross-section homoskedasticity,
E(u2

it) = σ2, ∀i, with σ2 estimated by σ̂2 = (NT̄ )−1
∑N
i=1

∑T
t=r+1 û

2
it. {YC: do we need

this?}

3.2.1 The selection of instrumental variables

By modelling the spatial and dynamic effects jointly, we can obtain the valid IVs internally. Under
Assumption 4 we can express y∗t as

y∗t = G

[
p∑
`=1

Φ`yt−` +

p∑
`=1

Φ∗`Wyt−` +

q∑
`=0

Π`xt−` +

q∑
`=0

Π∗` (W ⊗ IK)xt−` +α+ ut

]
. (22)
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This suggests that[
p∑
`=1

W 2yt−`,

p∑
`=1

W 3yt−`, . . . ,

q∑
`=0

W 2xt−`,

q∑
`=0

W 3xt−`, . . .

]
(23)

can be used as the IV for y∗t .
5 Hence, we employ the following set of IVs for y∗it in the individual

STARDL regression, (1):

zit =

(
p∑
`=1

y∗∗i,t−`,

p∑
`=1

y∗∗∗i,t−`, . . . ,

q∑
`=0

x∗∗i,t−`,

q∑
`=0

x∗∗∗i,t−`, . . .

)

where y∗∗i,t−` =
∑N
j=1 w

(2)
ij yj,t−`, y

∗∗∗
i,t−` =

∑N
j=1 w

(3)
ij yj,t−`, x

∗∗
i,t−` =

∑N
j=1 w

(2)
ij xj,t−` and x∗∗∗i,t−` =∑N

j=1 w
(3)
ij xj,t−` with w

(2)
ij and w

(3)
ij being the (i, j)th element of W 2 and W 3, respectively.

Next, we can derive the IVs from the higher time lags by rewriting (4) as

Φ (L)yt = Φ∗ (L)Wyt + Π (L)xt + Π∗ (L) (W ⊗ IK)xt +α+ ut (24)

where Φ (L) = IN−
∑p
`=1 Φ`L

`, Φ∗ (L) =
∑p
`=0 Φ∗`L

`, Π (L) =
∑q
`=0 Π`L

`, Π∗ (L) =
∑q
`=0 Π∗`L

`,
and

yt = Ψ (L)yt + Ξ (L)xt + [Φ (L)]
−1

[α+ ut]

where Ψ (L) = [Φ (L)]
−1

Φ∗ (L)W and Ξ (L) = [Φ (L)]
−1

[Π (L) + Π∗ (L) (W ⊗ IK)]. As Ψ0 =
Φ∗0W , we have:

y∗t = G
{

Ψ1 (L)yt + Ξ (L)xt + [Φ (L)]
−1

[α+ ut]
}

(25)

where Ψ1 (L) =
∑∞
`=1 Ψ`L

`. This suggests that the following additional IVs[
W 2yt−p−1,W

2yt−p−2, ...,Wxt−p−1,Wxt−p−2, ...
]

(26)

could be used for y∗t . See also Kelejian and Prucha (1999), and Lee and Yu (2014) for discussion
of an optimal set of instruments.

3.3 The STARDL model with both individual and time effects

Consider the STARDL model with both individual and time effects, αi and τt:

yit =

p∑
`=1

φi`yi,t−` +

p∑
`=0

φ∗i`y
∗
i,t−` +

q∑
`=0

π′i`xi,t−` +

q∑
`=0

π′∗i`x
∗
i,t−` + αi + τt + uit, (27)

which can be written as

ẙit =

p∑
`=1

φi`ẙi,t−` +

p∑
`=0

φ∗i`ẙ
∗
i,t−` +

q∑
`=0

π′i`x̊i,t−` +

q∑
`=0

π′∗i`x̊
∗
i,t−` + ůit,

5In practice we can apply the different weight matrices to construct y∗
t = Wyt andx∗

t = Qxt. In this case we
can also use

∑q
`=0 Wxt−` as an Internal IVs.
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where ẙit = yit − ȳi − ȳt + ȳ, and similarly for x̊it and ůit. In this case, we need to account for the
correlations between lagged yit and ůit, between lagged y∗it and ůit, as well as between current y∗it
and ůit. We first consider for ` = 1, 2, ... :

Cov (yi,t−`, ůit) = O

(
1

T

)
+O

(
1

NT

)
;Cov

(
y∗i,t−`, ůit

)
= O

(
1

NT

)
.

These terms would disappear asymptotically as T →∞. Next,we have:

Cov (y∗it, ůit) = Cov (y∗it, uit) +O

(
1

N

)
Fortunately, the CF approach already controls for this correlation, provided instruments are chosen
so that Assumption 7’ holds for the process ůit. This rules out the combinations of yt (for example,
W 2yt−p−1) as valid instruments but otherwise, given normalisation conditions sufficient to identify

αi + τt, such as
∑N
i=1 αi = 0 and

∑T
t=1 τt = 0, we expect that the CF estimator of (27) will be

consistent and follow the asymptotic normal distributions. This problem has been addressed in the
context of the homogeneous parameter spatial dynamic panel data model by Lee and Yu (2010b)
who show that the QML estimator, applied to a modified version of the above transformed data, is√
T consistent and asymptotically normally distributed.

4 Spatio-Temporal Network Analysis

Many of the tools of network analysis, such as popular centrality statistics and clustering algorithms,
can be applied to spatial models to facilitate their interpretation, with the graphical visualisation
and interpretation of network models growing rapidly in recent years. The STARDL model cap-
tures both spatial interactions and diffusion dependence within a dynamic network. In contrast to
homogeneous parameter models, where interest often centres on the single spatial parameter, here
we have numerous parameters performing complementary roles. Another contribution of this paper
is in developing a comprehensible and widely applicable format for the presentation of the estima-
tion results alongside the tools to analyse the evolving importance of particular nodes within the
network. To do so we provide two quantities, based on work by Shin et al. (2014) and Greenwood-
Nimmo, Nguyen and Shin (2015): the individual spatio-temporal dynamic multipliers; and, the
system diffusion multipliers each of which exists for a range of time horizons. The latter are col-
lected in a sequence of network connectedness matrices that can be interpreted as output network
matrices resulting from the input network matrix, W , and the STARDL coefficients. They also give
rise to two intuitive measures of the developing role of each node within the network: their external
motivation, reflecting the extent to, and direction in, which they are steered by the network; and,
their systemic influence, reflecting their relative importance within it.

For this practical network-oriented approach, we need only
√
T -consistent estimators of the

heterogeneous parameters. Our approach contrasts with the pooled or mean-group versions of
the estimators, which have been routinely proposed in the main panel data literature. In many
applications, including that in the following section, there is no economic reason to expect the
coefficients of the model to be non-negative, or to share a common sign. Regions may effectively be
competitors for the location of a particular industrial hub which, once established, sucks activity
from its immediate surroundings. A pooled or mean group estimator would then be subject to
an element of netting off that has the potential to produce a misleading global picture. A single
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pooled estimator is also unable to discern the relative importance of individual nodes beyond that
pre-supposed by the input matrix, W . Moreover, the asymptotic distribution of the pooled or
the mean-group estimators may be different, and their convergence rates depend on whether the
parameters are homogeneous or heterogeneous.

4.1 The Spatio-Temporal Dynamic Multipliers

Following Shin et al. (2014), it is straightforward to derive dynamic multipliers associated with
unit changes in y∗it, xit, x

∗
it and gt respectively on yi,t+h for h = 0, 1, 2... Rewrite the STARDL(p, q)

model, (1) as6

φi (L) yit = φ∗i (L) y∗it + πi (L)xit + π∗i (L)x∗it + uit (28)

where

φi (L) = 1−
p∑
`=1

φi`L
`;φ∗i (L) = 1−

p∑
`=0

φ∗i`L
`;πi (L) =

q∑
`=0

π′i`L
`;π∗i (L) =

q∑
`=0

π∗′i`L
`.

Premultiplying (28) by the inverse of φi (L), we obtain:

yit = φ̃∗i (L) y∗it + π̃i (L)xit + π̃∗i (L)x∗it + ũit (29)

where φ̃∗i (L)
(

=
∑∞
j=0 φ̃

∗
ijL

j
)

= [φi (L)]
−1
φ∗i (L), π̃i (L)

(
=
∑∞
j=0 π̃

′
ijL

j
)

= [φi (L)]
−1
πi (L), π̃∗i (L)

(
=
∑∞
j=0 π̃

∗′
ijL

j
)

=

[φi (L)]
−1
π∗i (L) and ũit = [φi (L)]

−1
uit. The φ̃∗ij , π̃

′
ij and π̃∗′ij for j = 0, 1, ..., can be evaluated

using the following recursive relationship:

φ̃∗ij = φi1φ̃
∗
i,j−1 + φi2φ̃

∗
i,j−2 + · · ·+ φi,j−1φ̃

∗
i1 + φij φ̃

∗
i0 + φ∗ij , j = 1, 2, ... (30)

where φij = 0 for j < 1 and φ̃∗i0 = φ∗i0, φ̃
∗
ij = 0 for j < 0 by construction. Similarly for π̃′ij and π̃∗′ij

for j = 0, 1, ....
The cumulative dynamic multipliers of y∗it, xit and xit on yi,t+h for h = 0, ...,H, can be evalu-

ated:7

mH
y∗i

=

H∑
h=0

∂yi,t+h
∂y∗it

=

H∑
h=0

φ̃∗ih;mH
xi =

H∑
h=0

π̃′ih;mH
x∗i

=

H∑
h=0

π̃∗′ih. (31)

By construction, as H →∞, mH
y∗i
→ βy∗i ;mH

xi → β′xi ;m
H
x∗i
→ β′x∗i , where βy∗i , βxi and βx∗i are the

associated long-run multipliers.
The STARDL model can be treated as an extended ARDL model for each spatial unit. Suppose

that yit is the domestic policy variable. An important feature of the STARDL model is to capture
three different forms of dynamic adjustment from initial equilibrium to the new equilibrium following
an economic perturbation with respect to domestic conditions (xit), overseas conditions (x∗it) and
the overseas policy decisions (y∗it). A careful investigation of the dynamic multipliers enables us to
categorise the group of countries that focus on domestic conditions only (e.g. the US), and those
that pay attention to both domestic and overseas conditions (e.g. the small open economies), in
the short-run and the long-run.

6To construct the dynamic multipliers, we should use the structural parameters in (1) which are consistently
estimated by the STARDL estimator from (21). Without loss of generality we drop the intercept, αi.

7We may apply the mean group estimation of the dynamic multipliers to investigate the overall average pattern
of mH

y∗i
, mH

xi
and mH

xi
provided with the bootstrap-based confidence intervals.
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4.2 The System Diffusion Multipliers

We now develop the system diffusion multipliers which measure the joint impacts of xt on yt+h in
space and time for h = 0, 1, 2... We rewrite (10) as

Φ̃ (L)yt = Π̃ (L)xt + ũt, (32)

where Φ̃ (L) = IN −
∑p
`=1 Φ̃`L

` and Π̃ (L) =
∑q
`=0 Π̃`L

`. Premultiplying (32) by
[
Φ̃ (L)

]−1

, we

have:

yt = B (L)xt +
[
Φ̃ (L)

]−1

ũt, B (L)

=

∞∑
j=0

BjL
j

 =
[
Φ̃ (L)

]−1

Π̃ (L) (33)

The diffusion multipliers, Bj for j = 0, 1, ..., can be evaluated as follows:

Bj = Φ̃1Bj−1 + Φ̃2Bj−2 + · · ·+ Φ̃j−1B1 + Φ̃jB0 + Π̃j , j = 1, 2, ... (34)

where B0 = Π̃0 and Bj = 0 for j < 0 by construction.
Then, the N ×NK matrix of the cumulative diffusion multipliers can be evaluated as follows:

dHx =

H∑
h=0

∂yt+h
∂x′t

=

H∑
h=0

Bh, H = 0, 1, 2, ... (35)

The cumulative diffusion multipliers of xhjt on yi,t+h are given by the (i, (j − 1) k + h)th element

of dHx . Let Sk be the NK × N selection matrix given by Sk =
[
ik, iK+k, ..., i(N−1)K+k

]
, where

ij is the NK × 1 selection vector with unity on jth row and zeros elsewhere. Then, the N × N
matrix of total diffusion multiplier effects with respect to the kth regressor, xkt =

(
xk1t, x

k
2t, ..., x

k
Nt

)′
is obtained by

dHxk =

H∑
h=0

∂yt+h
∂xk′t

=

H∑
h=0

BhS
k, k = 1, ...,K (36)

In the case of homogeneous spatial panel models (e.g. (6)), LeSage and Pace (2009) propose
using the average of the main diagonal elements of the N ×N matrix as a summary measure of the
own-partial derivatives or a direct effect. The direct effect for region i includes some feedback loop
effects that arise as a result of impacts passing through neighboring regions j and back to region
i. They propose an average of the (cumulative) off diagonal elements over all rows to produce a
summary that corresponds to the indirect effect associated with changes in the explanatory variable.
Debarsy et al. (2012) extend it to the case of dynamic space-time panel data. This allows us to
compute own- and cross-partial derivatives that trace the effects through time and space. Space-
time dynamic models produce a situation where a change in the ith observation of the explanatory
variable at time t will produce contemporaneous and future responses in all regions’ dependent
variables as well as other-region future responses. Note that it is not possible to separate out
the time dependence from spillover and diffusion effects. In the case with heterogeneous spatial
coefficients, LeSage and Chin (2016) propose use of the N diagonal elements to produce observation-
level direct effects for each of the N regions. As estimates of region specific indirect spill-in and
spill-out effects, they propose use of the sum of off-diagonal elements in each row and column.
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4.3 Dynamic Network Analysis

To provide the informative summary output measure of the impacts of {xjt}Nj=1 on {yit}Ni=1, we
apply the network approach to an analysis of the N ×N matrix of the diffusion multipliers of each
regressor in xt. Here we follow Diebold and Yilmaz (2014) and Greenwood-Nimmo, Nguyen and
Shin (2019, GNS) and apply the generalised connectedness measures.

At any horizon, h, one cross-tabulates the impacts of the single regressor, xkjt on the N×1 vector

of endogenous variables, yt. Rewrite the N × N matrices, dHxk in (36) in terms of the following
N ×N connectedness matrix (we suppress the horizon index to avoid cluttering our notation.):

C =


φ1←1 φ1←2 · · · φ1←N
φ2←1 φ2←2 · · · φ21←N

...
...

. . .
...

φN←1 φN←2 · · · φN←N

 (37)

The main diagonal elements of C represent (cumulative) own-region impacts that arise from both
time and spatial dependence. The off-diagonal elements reflect both spillovers measuring contem-
poraneous cross-partial derivatives and diffusion measuring cross-partial derivatives that involve
different time periods (and also through WX). The use of an arrow indicates the direction of the
spillover effect.

We start with the (cumulative) own-region impacts that arise from both time and spatial de-
pendence

(
HV
j←j

)
, defined as

Hj←j = φj←j (38)

which lie on the prime diagonal of C. Next, we define the cross-from or spill-in contribution as

Fj←• =

N∑
i=1,i6=j

φj←i (39)

where the subscript j ← • indicates that the directional effect is from all other countries to country
j. The following is true by construction:

Hj←j + Fj←• = TOTj←• =

N∑
i=1

φj←i. (40)

where TOTj←• denotes the aggregate impact of the regressor in country j attributable to all sources.
Notice that the underlying diffusion multipliers in (37) are not normalised and may be positive or
negative, which are different from the (normalised) connectedness matrix constructed using the
positive FEVDs as in Diebold and Yilmaz (2014). In this situation TOTj←• may understate the
total magnitude of the impacts on region j. To measure this we use the customary absolute row
sum of C, which we denote

ATOTj←• =

N∑
i=1

|φj←i|. (41)

Similarly, we define the total contributions to all other countries (or spill-out contributions) as

T•←j =

N∑
i=1,i6=j

φi←j (42)
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which measures the total directional connectedness from country j to the other countries in the
system. The net directional connectedness is defined simply as

Nj = T•←j − Fj←•. (43)

Finally, we define a pair of indices to address succinctly two questions of particular interest when
measuring connectedness: (i) ‘how dependent is the j-th country on external conditions?’; and, (ii)
‘to what extent does the j-th country influence/is the j-th country influenced by the system as a
whole?’ These measures are especially relevant when evaluating connectedness among geo-political
units within the global economy. In response to the first question, we propose the following intuitive
index of external motivation :

EMj =
Fj←•

ATOTj←•
, j = 1, ..., N

where −1 ≤ EMj ≤ 1 expresses the relative importance and direction of spill-ins in determining
the conditions in the j-th country. As EMj → 1(−1), then conditions in group j are dominated by
positive (negative) spill-ins, as opposed to direct effects. If region j receives contradictory spill-ins
or if their magnitude is small in comparison to direct effects then EMj → 0. In response to the

second question we follow Alter and Bayer (2014) in noting that by definition,
∑N
j=1Nj = 0, and

that total net connectedness across the network can be measured by

TNP =
∑

j:Nj>0

Nj =
1

2

N∑
j=1

|Nj |. (44)

We then develop the systemic influence index by

SIj =
Nj
TNP

, j = 1, ..., N,

where −1 ≤ SIj ≤ 1. For any horizon h, if the j-th region is broadly neutral within the network,
with a tendency to spill-outs to roughly match spill-ins, then SIj will be close to zero. Region j
will positive (negative) net shock propagator if 0 ≤ SIj ≤ 1 (−1 ≤ SIj ≤ 0) with a tendency to
transmit positive (negative) spill-outs and/or to receive negative (positive) spill-ins. The measures
of systemic influence balance across the network with the sum of the positive (negative) values
equalling one (minus one). A simple network with two connected nodes would see them located
at ±1; two disconnected nodes would locate at zero. With further nodes these influences become
diluted but a dominant node transmitting a positive spillover without significant feedback from
other smaller nodes would see its SIj close to one, while the other nodes clustered below zero and
those falling within its sphere of influence appearing more negative.

When studying connectedness among regions, the coordinate pair (EMj , SIj) in dependence-
influence space provides an elegant representation of regions i’s role in the system. There is the
tendency for points to cluster on a north-west to south east access, since positive (negative) spill-
ins contribute negatively (positively) to a region’s net connectedness. A region in the south-west
(north-east) quadrant would be one for which negative (positive) spill-ins were outweighed by larger
negative (positive) spill-outs, leading to a negative (positive) net connectedness measure.
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5 Monte Carlo Simulations

We investigate the small sample properties of the STARDL estimator via a Monte Carlo simulation
study. We use the following data generating process based on the heterogeneous STARDL(1,1)
model with one exogenous variable:

yit = φiyi,t−1 + πi0xit + πi1xi,t−1 + φ∗i0y
∗
it + φ∗i1y

∗
i,t−1 + π∗i0x

∗
it + π∗i1x

∗
i,t−1 + uit (45)

where yit is the scalar dependent variable and xit is a single exogenous regressor related to the of
the ith spatial unit at time t. Their spatially lagged values, are given by y∗it =

∑N
j=1 wijyjt and

x∗it =
∑N
j=1 wijxjt.

The row-normalised spatial weights matrix, W is based on a b-nearest neighbours specification,
with null elements apart from the b/2 either side of the principle diagonal (with neighbours wrap-
ping round to the start or end of the row), which are 1/b. The symmetry of this matrix means that
the column sums are also normalised to unity. We explore differing levels of spatial dependence by
allowing b = (2, 10),8 within a system of N = (25, 50, 75, 100) over T = (50, 100, 200). The indi-
vidual scalar parameters involving time and spatial lags of yi,t (φi, φ

∗
i0, φ

∗
i1) are independent draws

from a U(0, 0.4) distribution while the parameters for time and spatial lags of xi,t (πi0, πi1, π
∗
i0, π

∗
i1)

are independent draws from a U(0, 1) distribution.
For this case, parameter values must satisfy Assumption 5 (the stationarity of yt) with the

eigenvalues of
[IN −Φ∗0W ]

−1
[Φ1 + Φ∗1W ]

lying within the unit circle.9 Each specification is explored over R = 1, 000 repetitions.
We consider two experiments, exploring the effects of dependence in the exogenous variables and

heteroskedasticity in the disturbances. Experiment 1 uses a set of independent exogenous variables
as draws from a standard normal distribution and disturbances, uit, is made up of draws from an
independent standard normal distribution. The more general experiment 2 uses a set of serially
correlated exogenous variables, generated according to

xi,t = ρixi,t−1 + vi,t, vi,t ∼ N
(
0, 1− ρ2

i

)
, (46)

where ρi ∼ U [0.4, 0.6], alongside heteroskedastic disturbances with uit ∼ N(0, σ2
i ), with σ2

i =
0.5 + 0.25× ηi and ηi ∼ χ2

2.
Let αi0 denote the value of a parameter αi used to simulate the data and let α̂ij denote its

estimate in the jth repetition. Then we report the following statistics:
Average bias = N−1

∑N
i=1R

−1
∑R
j=1 (α̂ij − αi0), in Tables 1 and 2;

Average RMSE = N−1
∑N
i=1

√
R−1

∑R
j=1 (α̂ij − αi0)

2
, in Tables 3 and 4;

Average Size = N−1
∑N
i=1R

−1
∑R
j=1 I

(∣∣∣ α̂ij−αi0σα

∣∣∣ > t0.975

)
, where I(.) denotes the indicator

function and σα is an estimate of the standard deviation for the parameter, in Tables 5 and 6.
We consider both control function and QML estimation methods. Our control function estimates

are based on the instrument set of time and spatial lags of exogenous variables, y∗∗i,t−1 and x∗∗it , where

8The cases of b = 4 and 20 were also considered but produced qualitatively similar results. These results will be
available upon request.

9In our specification the largest of these eigenvalues ranges between 0.5 and 0.65 depending on N and on b, which
affects the relative importance of each unit within the system.
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y∗∗i,t−1 = w′iWyt−1 and x∗∗it = w′iWxt are the second spatial lags.10 The b-nearest neighbour
weighting matrix guarantees that these will not be collinear with y∗i,t−1 or x∗it. In fact this choice of
instrument set has the intuitive interpretation that we are using the next b neighbours’ neighbours
as our instruments.

The initial values for each iteration were provided by the (inconsistent) ordinary least squares
estimates of (45). The exogenous variables were then concentrated out and leaving an iteration
over the N vector φ∗ as in (15), with estimates of the other parameters recovered by least squares

regression conditional on φ̂∗.11

Table 1 show that both the CF and the QML estimates perform reasonably well. This is very
reassuring given the range of time and spatial dependence possible in (45). In both cases bias
falls as T increases and is not greatly affected by N , supporting our theoretical prediction. The
repeated uptick in bias between the cases N = 25, 50 and N = 75, 100 is likely to be due to the
values appended into the parameter vectors in the latter cases. For small T the QML estimator
has noticeably lower bias, but as T becomes large the results of the two estimators are comparable
with the control function estimator having a strong computational advantage. The estimates of all
parameters have biases of similar magnitude with the coefficients on the contemporaneous terms,
φ∗, π and π∗, exhibiting the lower biases than their equivalents on lagged terms and φ1. This is
not too surprising as the time dynamics in (45) open more channels through which a time lagged
variable may potentially impact on a yit. Interestingly, there is no noticeable deterioration in the
bias of either estimator even as b rises.

Table 2 indicates that both methods are reasonably robust to heteroskedasticity in the dis-
turbances and to time dependence in the exogenous variables. Indeed time dependence in the
exogenous variables improves CF estimates of contemporaneous spatial parameters, φ∗, due to the
stronger correlation between y∗it and the instrument x∗∗it , at the expense of parameters on lagged
exogenous variables, π1, due to increased correlation between the exogenous regressors.

Comparing Tables 3 and 4 it is clear that QML is the more efficient estimator. It should
be remembered, however, that these experiments are being played on MLE’s home pitch and a
comparison of the estimators under different distributional assumptions would be of interest.

A number of interesting patters appear in Tables 5 and 6. Firstly it is clear that the CF
estimates tend to be under-sized, particularly for φ∗ and φ∗1, although this improves towards 5 per
cent as T increases. The size for the QML estimates of these parameters is much closer to 5 per
cent but the others are slightly over-sized. Secondly, performance deteriorates with the number of
connections, with the CF becoming more under-sized while QML becomes over-sized. The QML
estimator recovers more successfully as T increases and is always within a percentage point for
T = 200.

10This is not the only possible instrument set, with higher spatial and/or time lags also valid and generated
internally,

IV =
[
W 2yt−1,W

3yt−1, . . . ,W
2xt,W

2xt−1, . . . ,W
2yt−2,Wxt−2,W

2xt−2, ...
]

The price for including extra instruments is potential multi-collinearity and we found that two instruments was often
the best choice in this particular set-up.

11Despite this concentration procedure this was far more computationally intensive even for moderately sized N .
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Table 1: Average Bias - time independent X, homoskedastic errors
Control Function

2 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0164 0.0023 −0.0001 0.0182 0.0045 0.0001 0.0291 0.0024 0.0038 0.0269 0.0062 0.0018
φ∗1 0.0072 0.0050 0.0026 0.0040 0.0033 0.0021 0.0020 0.0036 0.0014 0.0008 0.0029 0.0019
φ1 −0.0187 −0.0094 −0.0039 −0.0184 −0.0087 −0.0045 −0.0205 −0.0102 −0.0053 −0.0204 −0.0094 −0.0049
π −0.0034 −0.0017 0.0008 −0.0022 −0.0017 0.0001 −0.0080 −0.0004 −0.0004 −0.0055 −0.0012 −0.0003
π1 −0.0002 0.0020 0.0018 0.0015 0.0013 0.0022 −0.0007 0.0035 0.0014 −0.0003 0.0027 0.0018
π∗ −0.0062 0.0005 −0.0004 −0.0091 −0.0018 0.0001 −0.0187 −0.0003 −0.0029 −0.0124 −0.0032 −0.0006
π∗1 −0.0070 0.0010 0.0015 −0.0036 0.0002 0.0012 −0.0157 0.0019 −0.0015 −0.0137 −0.0019 0.0008

4 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0142 0.0025 −0.0005 0.0193 0.0030 −0.0028 0.0261 −0.0050 0.0043 0.0316 0.0008 0.0011
φ∗1 0.0005 0.0049 0.0032 0.0031 0.0050 0.0039 0.0016 0.0079 0.0010 −0.0019 0.0045 0.0034
φ1 −0.0160 −0.0107 −0.0047 −0.0207 −0.0101 −0.0052 −0.0214 −0.0110 −0.0054 −0.0209 −0.0102 −0.0055
π −0.0009 −0.0006 0.0004 −0.0026 −0.0005 0.0003 −0.0025 0.0012 −0.0004 −0.0033 −0.0005 −0.0003
π1 0.0029 0.0034 0.0021 0.0046 0.0048 0.0025 0.0060 0.0057 0.0016 0.0025 0.0040 0.0020
π∗ −0.0116 −0.0006 0.0013 −0.0147 −0.0046 0.0018 −0.0202 0.0029 −0.0037 −0.0232 −0.0012 −0.0010
π∗1 −0.0082 −0.0019 −0.0006 −0.0099 −0.0003 0.0032 −0.0167 0.0036 −0.0026 −0.0192 0.0011 −0.0012

QML
2 connections

N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ −0.0037 −0.0020 −0.0014 −0.0029 −0.0010 −0.0008 −0.0025 −0.0015 −0.0004 −0.0030 −0.0013 −0.0005
φ∗1 0.0075 0.0042 0.0023 0.0068 0.0031 0.0019 0.0076 0.0032 0.0013 0.0072 0.0028 0.0019
φ1 −0.0122 −0.0057 −0.0030 −0.0116 −0.0055 −0.0029 −0.0125 −0.0054 −0.0031 −0.0118 −0.0055 −0.0030
π 0.0026 −0.0003 0.0005 0.0011 0.0000 0.0011 0.0008 0.0007 −0.0002 0.0016 0.0001 0.0002
π1 0.0060 0.0029 0.0012 0.0043 0.0024 0.0014 0.0054 0.0023 0.0015 0.0053 0.0032 0.0009
π∗ 0.0067 0.0024 0.0015 0.0053 0.0019 0.0009 0.0051 0.0021 0.0009 0.0055 0.0029 0.0018
π∗1 0.0067 0.0030 0.0024 0.0094 0.0036 0.0006 0.0067 0.0045 0.0015 0.0087 0.0036 0.0015

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0046 0.0045 0.0004 0.0068 0.0027 0.0011 0.0046 0.0015 0.0021 0.0050 0.0032 0.0014
φ∗1 0.0046 0.0014 0.0009 0.0055 0.0012 0.0013 0.0055 0.0024 0.0007 0.0021 0.0028 0.0011
φ1 −0.0109 −0.0052 −0.0026 −0.0123 −0.0059 −0.0028 −0.0131 −0.0058 −0.0036 −0.0122 −0.0059 −0.0032
π 0.0012 0.0003 −0.0003 −0.0020 −0.0003 0.0002 −0.0001 0.0003 0.0002 0.0003 −0.0001 0.0000
π1 0.0046 0.0018 0.0013 0.0050 0.0025 0.0015 0.0063 0.0031 0.0018 0.0058 0.0026 0.0008
π∗ −0.0022 −0.0029 −0.0029 −0.0048 −0.0004 −0.0008 −0.0001 −0.0007 −0.0017 −0.0037 −0.0022 −0.0006
π∗1 −0.0078 −0.0043 0.0016 −0.0063 −0.0020 −0.0008 −0.0011 −0.0003 −0.0006 0.0021 −0.0027 −0.0022
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Table 2: Average Bias - time dependent X, heteroskedastic errors
Control Function

2 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0110 −0.0002 −0.0016 0.0060 −0.0021 −0.0008 0.0081 0.0048 0.0004 0.0067 0.0033 −0.0003
φ∗1 0.0161 0.0094 0.0064 0.0173 0.0099 0.0053 0.0188 0.0081 0.0049 0.0183 0.0090 0.0050
φ1 −0.0361 −0.0180 −0.0094 −0.0396 −0.0172 −0.0087 −0.0376 −0.0188 −0.0091 −0.0374 −0.0183 −0.0090
π −0.0034 −0.0010 0.0011 −0.0039 0.0004 0.0009 −0.0010 −0.0007 0.0001 −0.0013 −0.0013 0.0002
π1 0.0209 0.0131 0.0067 0.0236 0.0131 0.0058 0.0230 0.0123 0.0062 0.0236 0.0116 0.0069
π∗ −0.0124 0.0011 −0.0004 −0.0039 0.0016 −0.0008 −0.0053 −0.0025 −0.0002 −0.0047 −0.0004 0.0002
π∗1 0.0100 0.0079 0.0065 0.0164 0.0106 0.0053 0.0125 0.0060 0.0040 0.0130 0.0061 0.0042

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ −0.0151 0.0004 0.0026 −0.0056 −0.0001 0.0019 0.0057 −0.0031 0.0001 0.0279 0.0077 −0.0014
φ∗1 0.0306 0.0117 0.0051 0.0272 0.0114 0.0048 0.0240 0.0148 0.0068 0.0085 0.0068 0.0068
φ1 −0.0397 −0.0205 −0.0099 −0.0408 −0.0203 −0.0104 −0.0419 −0.0215 −0.0110 −0.0407 −0.0204 −0.0105
π 0.0005 −0.0011 0.0003 −0.0008 −0.0002 −0.0006 −0.0002 −0.0011 0.0004 −0.0010 −0.0006 −0.0009
π1 0.0316 0.0158 0.0073 0.0308 0.0156 0.0082 0.0309 0.0169 0.0079 0.0293 0.0149 0.0088
π∗ 0.0155 −0.0035 −0.0020 0.0013 −0.0035 −0.0001 −0.0002 0.0022 0.0002 −0.0188 −0.0071 0.0031
π∗1 0.0206 0.0021 −0.0026 0.0125 0.0097 0.0036 −0.0008 0.0057 0.0029 −0.0225 0.0011 0.0020

QML
2 connections

N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ −0.0037 −0.0011 −0.0004 −0.0049 −0.0020 −0.0003 −0.0045 −0.0023 −0.0010 −0.0039 −0.0015 −0.0008
φ∗1 0.0171 0.0077 0.0036 0.0162 0.0082 0.0041 0.0189 0.0091 0.0043 0.0177 0.0089 0.0040
φ1 −0.0289 −0.0146 −0.0071 −0.0293 −0.0146 −0.0069 −0.0303 −0.0149 −0.0069 −0.0295 −0.0146 −0.0073
π 0.0001 0.0004 0.0003 0.0005 0.0000 0.0000 0.0001 −0.0004 0.0004 0.0004 0.0001 0.0004
π1 0.0207 0.0096 0.0054 0.0225 0.0099 0.0052 0.0205 0.0106 0.0049 0.0201 0.0110 0.0049
π∗ 0.0023 0.0016 0.0003 0.0032 0.0020 0.0005 0.0039 0.0023 0.0018 0.0041 0.0014 0.0013
π∗1 0.0157 0.0073 0.0047 0.0213 0.0106 0.0050 0.0181 0.0097 0.0041 0.0188 0.0081 0.0042

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0039 0.0004 0.0012 0.0037 0.0017 0.0015 0.0018 0.0020 0.0014 0.0053 0.0019 0.0008
φ∗1 0.0167 0.0062 0.0036 0.0150 0.0075 0.0031 0.0164 0.0080 0.0043 0.0156 0.0077 0.0038
φ1 −0.0326 −0.0135 −0.0076 −0.0298 −0.0144 −0.0073 −0.0310 −0.0156 −0.0078 −0.0308 −0.0149 −0.0074
π 0.0018 0.0014 0.0007 −0.0017 0.0000 −0.0007 −0.0006 −0.0006 −0.0009 −0.0004 0.0009 0.0002
π1 0.0228 0.0106 0.0055 0.0231 0.0109 0.0055 0.0234 0.0112 0.0064 0.0211 0.0104 0.0055
π∗ 0.0007 −0.0025 −0.0017 −0.0072 −0.0011 0.0005 −0.0045 −0.0025 0.0003 −0.0045 −0.0006 −0.0006
π∗1 0.0044 0.0034 0.0008 0.0047 0.0067 −0.0005 0.0094 0.0046 −0.0014 0.0029 0.0010 0.0021
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Table 3: Average RMSE - time independent X, homoskedastic errors
Control Function

2 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 1.2446 0.6317 0.3436 1.3854 0.5339 0.3089 1.1537 0.6646 0.4148 1.5754 0.7015 0.3917
φ∗1 0.6155 0.2147 0.1324 0.3967 0.1986 0.1239 0.4201 0.2380 0.1537 0.5384 0.2312 0.1445
φ1 0.2158 0.1194 0.0669 0.2643 0.1026 0.0663 0.2018 0.1155 0.0736 0.2769 0.1201 0.0708
π 0.3705 0.1937 0.1150 0.4318 0.1763 0.1094 0.3708 0.1870 0.1219 0.4309 0.1896 0.1137
π1 0.4002 0.2373 0.1351 0.5320 0.2019 0.1233 0.4086 0.2187 0.1303 0.6272 0.2222 0.1323
π∗ 0.9958 0.4426 0.2495 0.7710 0.3975 0.2142 0.7038 0.3957 0.2402 0.9681 0.4143 0.2413
π∗1 0.8734 0.4395 0.2536 0.9454 0.3759 0.2267 0.7971 0.4558 0.3077 1.0468 0.4788 0.2804

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 3.0142 1.4441 0.9624 2.9305 1.7517 0.8196 3.3261 1.7719 0.8246 3.8326 1.9139 0.8826
φ∗1 1.1884 0.5812 0.3835 1.2450 0.6925 0.3487 1.3931 0.7154 0.3733 1.5438 0.8121 0.3836
φ1 0.1983 0.1003 0.0657 0.2008 0.1147 0.0650 0.2549 0.1109 0.0661 0.2720 0.1174 0.0670
π 0.2785 0.1472 0.0927 0.2812 0.1612 0.0916 0.3357 0.1798 0.0919 0.4010 0.1651 0.0924
π1 0.3403 0.1682 0.1095 0.3041 0.1948 0.1024 0.3411 0.2167 0.1017 0.3831 0.1877 0.1022
π∗ 2.9307 1.3650 0.8985 2.7138 1.6716 0.7715 3.0674 1.7163 0.7984 3.5273 1.6812 0.7942
π∗1 2.9973 1.4096 0.9646 2.8104 1.6205 0.8313 3.1273 1.8086 0.8125 3.3936 1.7584 0.8334

QML
2 connections

N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.3506 0.2242 0.1500 0.3431 0.2167 0.1478 0.3454 0.2178 0.1470 0.3510 0.2245 0.1506
φ∗1 0.2529 0.1693 0.1158 0.2543 0.1694 0.1164 0.2577 0.1706 0.1177 0.2566 0.1714 0.1174
φ1 0.1807 0.1217 0.0835 0.1806 0.1226 0.0846 0.1835 0.1236 0.0859 0.1826 0.1230 0.0850
π 0.2427 0.1617 0.1098 0.2420 0.1611 0.1108 0.2461 0.1615 0.1108 0.2445 0.1610 0.1105
π1 0.2669 0.1767 0.1226 0.2634 0.1737 0.1206 0.2665 0.1743 0.1202 0.2638 0.1745 0.1198
π∗ 0.3734 0.2484 0.1691 0.3722 0.2463 0.1687 0.3765 0.2499 0.1695 0.3775 0.2494 0.1711
π∗1 0.3999 0.2642 0.1832 0.4059 0.2648 0.1827 0.4026 0.2627 0.1794 0.4052 0.2656 0.1820

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.5562 0.3724 0.2575 0.5446 0.3647 0.2506 0.5380 0.3598 0.2491 0.5504 0.3675 0.2514
φ∗1 0.4352 0.2875 0.1976 0.4355 0.2879 0.1968 0.4334 0.2902 0.1983 0.4444 0.2961 0.2017
φ1 0.1767 0.1189 0.0831 0.1782 0.1216 0.0841 0.1799 0.1222 0.0850 0.1787 0.1219 0.0850
π 0.2238 0.1504 0.1043 0.2226 0.1490 0.1040 0.2251 0.1499 0.1030 0.2261 0.1503 0.1034
π1 0.2459 0.1647 0.1145 0.2415 0.1639 0.1138 0.2442 0.1655 0.1141 0.2427 0.1636 0.1132
π∗ 0.8344 0.5691 0.3884 0.8597 0.5811 0.3939 0.8474 0.5734 0.3948 0.8444 0.5724 0.3899
π∗1 0.8923 0.6116 0.4272 0.9173 0.6188 0.4306 0.9005 0.6050 0.4223 0.9092 0.6047 0.4187
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Table 4: Average RMSE - time dependent X, heteroskedastic errors
Control Function

2 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.7353 0.3960 0.2524 0.9734 0.4078 0.2518 0.9932 0.4594 0.2686 0.9706 0.4740 0.2703
φ∗1 0.2989 0.1863 0.1238 0.3648 0.1926 0.1276 0.3767 0.2084 0.1313 0.3708 0.2071 0.1285
φ1 0.1562 0.0937 0.0625 0.1795 0.0961 0.0636 0.2868 0.0999 0.0650 0.2046 0.1018 0.0652
π 0.3238 0.1752 0.1151 0.3529 0.1854 0.1210 0.4021 0.1869 0.1200 0.3937 0.1857 0.1183
π1 0.3306 0.1911 0.1275 0.4077 0.2021 0.1330 0.3957 0.2071 0.1333 0.3939 0.2056 0.1310
π∗ 0.5939 0.3330 0.2118 0.6127 0.3184 0.2014 0.5847 0.3287 0.2059 0.6196 0.3324 0.2031
π∗1 0.5823 0.3145 0.1992 0.8693 0.3277 0.2118 0.7870 0.3579 0.2164 0.7613 0.3596 0.2173

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 2.0820 1.1969 0.6574 1.9941 1.1746 0.6363 2.7413 1.1986 0.6176 7.4793 1.3384 0.6585
φ∗1 1.0373 0.5560 0.3309 0.9541 0.5688 0.3171 1.3004 0.5899 0.3242 3.3241 0.6351 0.3365
φ1 0.1777 0.0993 0.0634 0.1821 0.0992 0.0645 0.2415 0.1034 0.0650 0.2515 0.1075 0.0648
π 0.2907 0.1670 0.1056 0.3154 0.1776 0.1089 0.3633 0.1704 0.1075 0.3576 0.1734 0.1073
π1 0.3282 0.1915 0.1202 0.3351 0.1876 0.1211 0.3914 0.2021 0.1209 0.3965 0.1912 0.1196
π∗ 2.1892 1.2238 0.6787 2.0797 1.1830 0.6572 2.7036 1.1504 0.6386 5.4662 1.2393 0.6391
π∗1 2.1857 1.2063 0.6748 2.0632 1.1846 0.6518 2.7402 1.1615 0.6225 7.9759 1.2665 0.6326

QML
2 connections

N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.2514 0.1599 0.1072 0.2586 0.1611 0.1091 0.2628 0.1659 0.1099 0.2677 0.1685 0.1122
φ∗1 0.1850 0.1236 0.0851 0.1909 0.1258 0.0870 0.1947 0.1281 0.0883 0.1940 0.1279 0.0881
φ1 0.1292 0.0869 0.0594 0.1314 0.0876 0.0599 0.1329 0.0885 0.0604 0.1333 0.0884 0.0608
π 0.2244 0.1463 0.0997 0.2280 0.1493 0.1013 0.2260 0.1486 0.1016 0.2251 0.1487 0.1016
π1 0.2443 0.1623 0.1120 0.2473 0.1630 0.1117 0.2481 0.1640 0.1127 0.2488 0.1643 0.1126
π∗ 0.3278 0.2215 0.1478 0.3292 0.2189 0.1485 0.3329 0.2191 0.1497 0.3341 0.2200 0.1501
π∗1 0.3545 0.2406 0.1621 0.3615 0.2385 0.1623 0.3608 0.2374 0.1620 0.3618 0.2388 0.1637

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.3836 0.2661 0.1820 0.3888 0.2641 0.1811 0.3868 0.2603 0.1796 0.3961 0.2645 0.1834
φ∗1 0.3022 0.2108 0.1450 0.3099 0.2124 0.1460 0.3128 0.2126 0.1462 0.3176 0.2151 0.1485
φ1 0.1308 0.0875 0.0609 0.1309 0.0887 0.0611 0.1323 0.0887 0.0611 0.1315 0.0886 0.0614
π 0.2019 0.1387 0.0951 0.2068 0.1404 0.0965 0.2091 0.1398 0.0966 0.2074 0.1397 0.0965
π1 0.2317 0.1583 0.1099 0.2316 0.1586 0.1094 0.2341 0.1575 0.1096 0.2323 0.1568 0.1096
π∗ 0.7333 0.5144 0.3421 0.7411 0.5039 0.3384 0.7358 0.4973 0.3391 0.7262 0.4921 0.3350
π∗1 0.8358 0.5857 0.3919 0.8349 0.5613 0.3822 0.8353 0.5609 0.3801 0.8229 0.5514 0.3759
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Table 5: Average size - time independent X, homoskedastic errors
Control Function

2 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0272 0.0304 0.0360 0.0289 0.0321 0.0378 0.0304 0.0319 0.0364 0.0288 0.0308 0.0341
φ∗1 0.0440 0.0410 0.0435 0.0448 0.0418 0.0424 0.0428 0.0406 0.0424 0.0424 0.0406 0.0411
φ1 0.0565 0.0482 0.0486 0.0550 0.0490 0.0498 0.0548 0.0500 0.0488 0.0516 0.0479 0.0476
π 0.0443 0.0389 0.0432 0.0458 0.0441 0.0425 0.0475 0.0419 0.0449 0.0452 0.0429 0.0434
π1 0.0454 0.0412 0.0432 0.0459 0.0427 0.0449 0.0458 0.0416 0.0441 0.0449 0.0410 0.0425
π∗ 0.0388 0.0386 0.0394 0.0411 0.0405 0.0423 0.0434 0.0383 0.0409 0.0405 0.0383 0.0404
π∗1 0.0409 0.0366 0.0415 0.0419 0.0387 0.0409 0.0436 0.0394 0.0424 0.0404 0.0388 0.0399

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0178 0.0206 0.0269 0.0192 0.0228 0.0268 0.0183 0.0204 0.0283 0.0168 0.0192 0.0257
φ∗1 0.0275 0.0240 0.0318 0.0278 0.0274 0.0298 0.0271 0.0253 0.0312 0.0246 0.0241 0.0289
φ1 0.0511 0.0475 0.0458 0.0485 0.0475 0.0470 0.0487 0.0457 0.0484 0.0446 0.0452 0.0451
π 0.0451 0.0421 0.0426 0.0441 0.0434 0.0440 0.0459 0.0423 0.0436 0.0418 0.0404 0.0428
π1 0.0459 0.0423 0.0414 0.0450 0.0447 0.0433 0.0448 0.0410 0.0435 0.0428 0.0403 0.0421
π∗ 0.0244 0.0248 0.0298 0.0251 0.0278 0.0299 0.0249 0.0250 0.0318 0.0225 0.0227 0.0296
π∗1 0.0244 0.0254 0.0286 0.0273 0.0272 0.0309 0.0255 0.0257 0.0320 0.0244 0.0240 0.0289

QML
2 connections

N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0356 0.0368 0.0386 0.0376 0.0375 0.0409 0.0385 0.0383 0.0402 0.0368 0.0374 0.0381
φ∗1 0.0656 0.0568 0.0540 0.0694 0.0582 0.0552 0.0680 0.0575 0.0540 0.0660 0.0583 0.0539
φ1 0.0798 0.0670 0.0566 0.0767 0.0650 0.0579 0.0767 0.0641 0.0586 0.0770 0.0642 0.0569
π 0.0701 0.0639 0.0542 0.0715 0.0599 0.0542 0.0706 0.0607 0.0558 0.0716 0.0605 0.0551
π1 0.0706 0.0627 0.0569 0.0723 0.0599 0.0552 0.0712 0.0594 0.0558 0.0707 0.0606 0.0543
π∗ 0.0638 0.0569 0.0511 0.0670 0.0572 0.0530 0.0652 0.0586 0.0534 0.0655 0.0578 0.0544
π∗1 0.0626 0.0574 0.0544 0.0662 0.0564 0.0524 0.0656 0.0572 0.0536 0.0645 0.0568 0.0517

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0816 0.0658 0.0556 0.0801 0.0646 0.0558 0.0795 0.0653 0.0577 0.0796 0.0651 0.0553
φ∗1 0.0822 0.0645 0.0566 0.0820 0.0644 0.0558 0.0824 0.0671 0.0586 0.0827 0.0657 0.0561
φ1 0.0826 0.0635 0.0562 0.0825 0.0668 0.0558 0.0849 0.0656 0.0588 0.0824 0.0651 0.0582
π 0.0835 0.0670 0.0596 0.0799 0.0638 0.0598 0.0826 0.0641 0.0577 0.0827 0.0660 0.0562
π1 0.0818 0.0638 0.0596 0.0809 0.0651 0.0579 0.0812 0.0666 0.0582 0.0806 0.0664 0.0576
π∗ 0.0804 0.0660 0.0586 0.0837 0.0667 0.0570 0.0821 0.0676 0.0579 0.0828 0.0675 0.0567
π∗1 0.0812 0.0664 0.0588 0.0822 0.0651 0.0563 0.0825 0.0658 0.0570 0.0836 0.0666 0.0574
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Table 6: Average size - time dependent X, heteroskedastic errors
Control Function

2 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0368 0.0386 0.0454 0.0422 0.0413 0.0447 0.0398 0.0415 0.0450 0.0381 0.0397 0.0436
φ∗1 0.0486 0.0452 0.0479 0.0531 0.0472 0.0489 0.0489 0.0460 0.0484 0.0478 0.0458 0.0465
φ1 0.0667 0.0592 0.0555 0.0679 0.0600 0.0567 0.0670 0.0586 0.0551 0.0646 0.0575 0.0543
π 0.0566 0.0530 0.0512 0.0581 0.0530 0.0509 0.0573 0.0514 0.0513 0.0557 0.0507 0.0498
π1 0.0569 0.0504 0.0523 0.0568 0.0536 0.0523 0.0582 0.0515 0.0509 0.0559 0.0505 0.0511
π∗ 0.0544 0.0486 0.0497 0.0557 0.0497 0.0512 0.0544 0.0491 0.0503 0.0523 0.0482 0.0479
π∗1 0.0527 0.0488 0.0512 0.0566 0.0510 0.0508 0.0538 0.0505 0.0488 0.0524 0.0489 0.0494

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0296 0.0283 0.0368 0.0291 0.0296 0.0365 0.0283 0.0294 0.0375 0.0279 0.0284 0.0359
φ∗1 0.0361 0.0341 0.0395 0.0351 0.0339 0.0388 0.0353 0.0343 0.0400 0.0343 0.0326 0.0380
φ1 0.0616 0.0529 0.0526 0.0642 0.0542 0.0542 0.0619 0.0573 0.0542 0.0593 0.0531 0.0538
π 0.0583 0.0508 0.0493 0.0573 0.0492 0.0504 0.0561 0.0496 0.0499 0.0535 0.0493 0.0493
π1 0.0528 0.0502 0.0490 0.0562 0.0513 0.0506 0.0559 0.0505 0.0498 0.0522 0.0483 0.0489
π∗ 0.0418 0.0357 0.0407 0.0389 0.0385 0.0421 0.0390 0.0360 0.0403 0.0390 0.0360 0.0400
π∗1 0.0434 0.0374 0.0433 0.0434 0.0390 0.0429 0.0416 0.0388 0.0429 0.0411 0.0375 0.0419

QML
2 connections

N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0451 0.0400 0.0431 0.0433 0.0406 0.0398 0.0419 0.0413 0.0421 0.0404 0.0379 0.0392
φ∗1 0.0672 0.0574 0.0521 0.0676 0.0573 0.0518 0.0669 0.0557 0.0535 0.0655 0.0564 0.0522
φ1 0.0832 0.0682 0.0579 0.0811 0.0673 0.0582 0.0808 0.0676 0.0573 0.0830 0.0666 0.0582
π 0.0787 0.0634 0.0570 0.0752 0.0633 0.0534 0.0735 0.0622 0.0565 0.0737 0.0625 0.0549
π1 0.0772 0.0636 0.0562 0.0729 0.0631 0.0557 0.0754 0.0630 0.0566 0.0744 0.0624 0.0569
π∗ 0.0722 0.0631 0.0532 0.0744 0.0627 0.0539 0.0697 0.0592 0.0541 0.0708 0.0602 0.0545
π∗1 0.0706 0.0634 0.0553 0.0719 0.0588 0.0536 0.0710 0.0600 0.0542 0.0692 0.0591 0.0544

10 connections
N 25 50 75 100
T 50 100 200 50 100 200 50 100 200 50 100 200
φ∗ 0.0798 0.0664 0.0580 0.0822 0.0651 0.0579 0.0812 0.0654 0.0584 0.0818 0.0632 0.0573
φ∗1 0.0794 0.0648 0.0563 0.0823 0.0678 0.0579 0.0804 0.0649 0.0585 0.0829 0.0657 0.0588
φ1 0.0882 0.0674 0.0616 0.0874 0.0700 0.0599 0.0904 0.0679 0.0598 0.0868 0.0682 0.0602
π 0.0834 0.0653 0.0552 0.0845 0.0663 0.0586 0.0840 0.0669 0.0585 0.0839 0.0661 0.0560
π1 0.0840 0.0678 0.0598 0.0831 0.0675 0.0582 0.0842 0.0639 0.0579 0.0825 0.0646 0.0580
π∗ 0.0812 0.0628 0.0536 0.0835 0.0663 0.0576 0.0821 0.0655 0.0572 0.0836 0.0663 0.0564
π∗1 0.0856 0.0642 0.0563 0.0833 0.0643 0.0587 0.0829 0.0669 0.0585 0.0828 0.0666 0.0573
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6 Empirical Application to Spatio-temporal Diffusion of Armed
Violence against Civilians in the Iraqi War

We demonstrate the usefulness of our model in an application to fatalities due to armed violence in
the aftermath of the 2003 Iraq war. The data cover monthly deaths between 2004 and 2009 (with
two missing months May 2004 and March 2009) across the 18 provincial governorates of Iraq shown
in Figure 1, collected by the Pentagon and released notoriously by WikiLeaks in October 2010.
Deaths are classified into those of enemy or anti-coaltion insurgents, including foreign and Iraqi
fighters, and civilians, the vast majority of whom were Iraqi but a minority were foreign security
contractors. These data present a rare opportunity to analyse the intensity of armed violence and
its spatio-temporal diffusion through the different regions of the country, if any, notwithstanding
some concern over their lack of transparency in the attribution of deaths to armed violence and in
distinguishing civilians from combatants.

The period is dominated by an insurgent uprising involving relatively mobile militia groups
motivated by conditions across, and able to relocate within, the country. The first part of the
period, beginning in the spring of 2004, is characterised by militia groups seizing effective control
of cities and their surrounds and holding them until dislodged by coalition forces, whereupon they
would melt away into the local population before regrouping in another sympathetic area, often in a
different governorate. The first such outbreak involved members of the former ruling Ba’ath party,
who had been summarily ejected from powerful roles in the state by the new coalition authority,
and was centred on the city of Fallujah, in Anbar, a Sunni-dominated area, which they took and
held in the face of the relatively weak institutions that prevailed in the country. Once the uprising
was put-down many of these forces relocated elsewhere within the so-called Sunni triangle, whose
other vertices are Baghdad and Tikrit in Saladin. This group was not alone in taking up arms,
however. Mounting unrest among poorer Shia Iraqi’s led to the eruption of a second branch of the
insurgency, concentrated initially on the ancient city and neighbouring governorate of Najaf, before
spreading to other Shia areas, and settling particularly heavily on the southern region of Basrah.
During the later part of the period there was a explosion of sectarian violence, initiated by a bomb
attack in Samarra, in Saladin in February 2006. This led to rival militias attacking civilians of the
other group, most often in Baghdad but spreading to neighbouring regions, particularly Diyala,
which had been the centre for Al Qaeda in Iraq and was becoming the centre for the group now
known as Islamic State. It is important to note that violence tended to concentrate on particular
cities and regions, with many others, in particular the Kurdish provinces in the north of the country
which maintained strong local institutions, left relatively untouched.

Table 7 presents the number of civilian deaths across each governorate and per 1,000 inhabitants,
and the number of enemy deaths in descending order.
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Table 7: Civilian and Enemy casualties across governorates (2004-2009)
Civilian Enemy

Rank Governorate Deaths % Per 1000∗ Governorate Deaths %
1 Baghdad 36,998 55.99 1.410 Anbar 6,602 27.53
2 Diyala 7,142 10.81 0.272 Baghdad 6,526 27.21
3 Ninewa 6,009 9.09 0.229 Diyala 3,211 13.39
4 Salah al-Din 3,197 4.84 0.122 Ninewa 2,615 10.90
5 Basrah 2,635 3.99 0.100 Salah al-Din 1,760 7.34
6 Babil 2,251 3.41 0.086 Najaf 1,064 4.44
7 Anbar 2,191 3.32 0.084 Basrah 467 1.95
8 Tamim 1,780 2.69 0.068 Babil 417 1.74
9 Wassit 887 1.34 0.034 Tamim 394 1.64

10 Kerbala 819 1.24 0.031 Wassit 265 1.10
11 Qadisiyah 468 0.71 0.018 Qadisiyah 160 0.67
12 Najaf 335 0.51 0.013 Dhi-qar 142 0.59
13 Dhi-qar 280 0.42 0.011 Karbala 120 0.50
14 Arbil 235 0.36 0.009 Maysan 51 0.21
15 Maysan 135 0.20 0.005 Arbil 28 0.12
16 Sulaymaniyah 125 0.19 0.005 Muthanna 14 0.06
17 Muthanna 64 0.10 0.002 Sulaymaniyah 8 0.03
18 Dohuk 40 0.06 0.002 Dohuk 5 0.02

Others 490 0.74 Others 135 0.56

Sum 66,081 100 23,984 100

Spearman’s rank correlation coefficient 0.897
p-value 0.000
∗Deaths scaled by 1000 in the population based on the 2003 World Bank estimates (World Bank
2013).
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There is a strong and clear correlation between the ranking of governorates by civilian and en-
emy deaths, with a Spearman’s rank correlation coefficient close to 0.9, but it is equally clear that
the proportions of each type of casualty do not match for many governorates. Baghdad, the capital
governorate where roughly a quarter of population reside12, was affected disproportionately, suffer-
ing over half of civilian deaths and experiencing civilian death toll per 1,000 inhabitants more than
five times that in any other governorate, largely the result of sectarian attacks. Despite this concen-
tration, 73% of insurgent deaths occurred outside of Baghdad, with Anbar governorate providing
the highest toll of insurgent casualties but experiencing a small fraction of the civilian casualties
suffered in Baghdad. It is worth noting that many provinces were relatively unaffected, particularly
the predominantly Kurdish areas of Arbil and Sulaymaniyah, where the local institutions were able
to maintain order virtually throughout the period, and some areas of the south, such as Maysan and
Dhi-Qar, even though many of these areas share a border with governorates that saw significant
casualties.

We estimate the STARDL(1, 1) model with civilian casualties as the dependent variable and
enemy casualties as the independent variable across N = 18 governorates and T = 70 months of
data using quasi-maximum likelihood. Modelling civilian casualties in terms of civilian and enemy
casualties with both time and spatial lags has numerous advantages in light of the history of the
conflict: it looks to explain casualties both in terms of coalition action against the insurgency
and sectarian violence; it models the security situation as evolving through time, capturing the
dynamic nature of the conflict; and, it explicitly models contagion within the country. To do so
we deploy a row standardised inverse distance matrix as the weight matrix W . While this choice
uses distance to act as a proxy for the ease of travel between areas for armed militias it is relatively
naive in ignoring the ethnic and religious partitions in the country. This makes the heterogeneity
in the susceptibility of each governorate to the spillover effects from neighbours, and indeed in the
direction of those effects, another attractive property of our specification.

Due to the large number of individual equations and the complicated, inter-linked and dynamic
system, the STARDL coefficients themselves are not the clearest way to understand the full ef-
fects of enemy and civilian deaths in fuelling the insurgency. Instead in Figure 2 we present the
dynamic multipliers for each province with respect to neighbouring civilian casualties (y∗) and in-
surgent deaths within (x) and in neighbouring provinces (x∗). There is a consistent pattern across
all governorates that civilian casualties are increased by civilian casualties in neighbouring regions
and that these are noticeably more important than insurgent casualties either within the region or
its neighbours. Magnitudes vary greatly between governorates, however, with Basrah and Diyala
standing out as the two regions that are particularly open to influence by civilian casualties else-
where. This is not surprising given that later uprisings by Shia and Sunni groups centred on these
two governorates. On the other hand, Arbil, a relatively peaceful predominantly Kurdish area
in the north, appears well insulated after the initial shock. The dynamic multipliers attempt to
match the spread and persistence of the insurgency and so it is not suprising that, in the main,
the heterogeneous coefficient φi1, φ∗io and φ∗i1 relating to time, spatial and time-spatial lags are
positive. Not every region was affected by the insurgency, however, with some relatively peaceful
areas, such as Dhi-Qar and Sulaymaniyah, sharing borders with more violent neighbours, respec-
tively Basrah and Diyala. Whereas a homogeneous parameter model tends to predict contagion on
the basis of contaminated neighbours, our heterogeneous model is sufficiently flexible to capture a
range of differing time and spatial dynamics, in these cases by allowing negative estimates of φ∗io

12The estimated number of population in Baghdad is 7,145,470 in 2007 (UN Joint Analysis Policy Unit, 2011).
The estimated number of population in Iraq is 29,682,000 in 2007.

29



and positive estimates of φ∗i1 to cancel over the long term. Since the STARDL(1,1) contains only
one time lag, the multipliers generally proceed in a predictable way to their long run values. The
jagged reversions displayed by Maysan, Dihok and Karbala are the result of an estimated negative
value for φi1 (not statistically significant), reflecting the relatively low number of civilian deaths in
those governorates and the sporadic nature of the violence.

The provinces display a wider pattern of response to x and x∗, measuring the effects of insurgent
deaths from within and from neighbouring provinces, produced partly by the estimates of πi0, πi1,
π∗io and π∗i1. For some governorates, such as An-Najaf and Basrah, the effect of insurgent deaths
within the province is to reduce civilian deaths, perhaps through reduced capacity, while insurgent
deaths in neighbouring regions increase them. This type of behaviour is consistent with a story of
militia relocation to these provinces having suffered heavy casualties and possibly military defeat
elsewhere, as was indeed the case. For other governorates, for example Baghdad, the opposite
picture emerges, with insurgent deaths within the province increasing civilian deaths, while those in
neighbouring provinces reduce them. This type of behaviour is consistent with a cycle of retribution
fuelled by an influx of insurgents from surrounding provinces that was typical of the sectarian
violence that came to dominate the later conflict, particularly in Baghdad. The long-run effects of
x on y are are positive for only 13 of the 18 provinces, so that in the remaining five an increase
in enemy combatant deaths serves to reduce, over time, civilian casualties in that province. Two
reasons for this may be: the degradation of insurgent capabilities; alongside, the strategic decision
to target resources or to enact retribution at other provinces where that is thought to be more
effective. This latter reason shows up as the long-run impact on y of x∗, which is positive for nine
provinces. Of those, perhaps the most striking is Basrah, which alongside Sala ad-Din, appears
particularly open to blowback from insurgent deaths outside its locality. Together with the capital,
Baghdad, the Basrah was an important military posting during the period of the war, with British
forces stationed there from the initiation of the Iraq war. This oil-rich region became the focus of a
Shia uprising by the so-called Mahdi Army under the leadership of Muqtada al-Sadr until control
of Basrah International Airport was handed to Iraqis in January 2009. In contrast to Basrah where
spatial diffusion was prevalent, Baghdad shows strong and significant temporal diffusion (i.e., yt−1

on yt) of armed violence against civilians. Baghdad was the major military post for the US forces
in wartime, and was heavily armoured due to severe insurgency against military personnel, civilians
and foreign contractors.

The cumulative diffusion multipliers in Figure 3 support this analysis, taking account of network
as well as time effects. It is immediately noticeable that direct effects are relatively small: all are
under 0.5 apart from Baghdad and the relatively peaceful Sulaymaniyah. Spill-in effects are broadly
positive and can exceed direct effects over the long term, such as in An-Najaf and Al Qadisiyah.
Negative spill-outs are noted in Diyala, Basrah, Dhi-Qar and Karbala, with the largest positive
spill-out coming from Baghdad. It is not too surprising that, as the largest city and the centre
of the coalition government, the security situation in Baghdad was largely determined there, with
relatively little influence from outside as shown by a slightly negative spill-in diffusion multiplier.
Nor is it surprising that the breakdown spread out from the capital, as shown by the large and
positive spill-out diffusion multiplier. The areas most open to substantially positive spill-in effects
are Basrah and Diyala, suggesting that this is where the impact from Baghdad was felt. Both
areas have negative, if comparatively small, spill-out diffusion multipliers, suggesting that they
were good areas to engage in counter-insurgency. In 2006 Diyala was designated the capital of the
Islamic caliphate that the group Islamic State hoped to establish in Iraq and soon became seen as
a safe haven for Sunni insurgents. At the same time, its religious mix left it particularly open to
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sectarian violence, partly in retribution to events in Baghdad.
It is of significant interest to consider the estimated network in more detail by looking at the

impact of an enemy death in one governorate on civilian deaths over time in the others. Figures 4
and 5 illustrate the N×N matrices of the cumulative diffusion multipliers, dHx for h = 0 and h = 40
respectively, with the recipient shown on the vertical axis. Not surprisingly, the strongest instan-
taneous effects come from within, although spatial spillovers are not uncommon. Some provinces,
such as Sulaymaniyah, Arbil and Babil, appear to react particularly quickly, but there were rela-
tively few actual outbreaks of violence in these provinces. After 40 months, the cumulative effects
of an insurgent death in a neighbouring state sometimes exceed those of a death within the state,
such as in Al-Qadisiyah and Wasif. In the case of Basrah and Diyala, the cumulative effects of
insurgent deaths within one province is not just to reduce civilian deaths in that province, as dis-
cussed earlier, but to reduce civilian deaths in the other. These are not adjacent provinces and the
effect contrasts with that from most other provinces, particularly Baghdad and Sulaymaniyah. The
transmission of violence from Baghdad is also relatively clear from Figure 5, and it is worth noting
that this transmission is able to affect Basrah in the far south without having much impact on
governorates such as Dhi-Qar, Maysan and Muthannia that lie in between. This pattern is broadly
consistent with the precarious power balance in the country at the time, with rival groups using
violence to assert relevance and influence over the nascent political institutions. Insurgent casual-
ties in areas dominated by one militia removes the need for a rival group to carry out attacks in
order to maintain relative importance. If, however, those casualties are inflicted by Kurdish forces,
who are closely allied to the coalition regime, then maintaining that relative importance requires
an increase in violence in other areas.

Figures 6, 7 and 8 show the external motivation / systemic influence based on the cumulative
diffusion multipliers at horizons 0, 1 and 40, respectively. It is noticeable that in the short run
the external motivation is initially mixed but in the long run it is universally positive, reflecting
the upward trend in all spill-in diffusion multipliers in Figure 3. The predominently Kurdish areas
of Arbil, Sualymaniuah and At-Ta’mim are among the least motivated from outside, reflecting
their relatively strong local security institutions. They are also among the governorates with the
largest positive systemic influence to increase violence elsewhere, alongside Baghdad and Anbar.
Baghdad grows in systemic importance with the time horizon, overtaking Anbar, Babil and At-
Ta’mim at longer time horizons, while remaining one of the least externally motivated governorates.
Baghdad’s positive systemic influence reflects the significance of spill-outs, in terms of increased
civilian casualties, from insurgent casualties in Baghdad. Basrah has the largest negative systemic
influence at all three horizons and among the most positive external motivation, reflecting the
tendency for positive spill-ins and the speed to transmission to this province. Transmission to
Diyala, where many attacks on civilians were carried out in retribution appears slower. The initial
motivation for Diyala is negative and the province exerts little systemic influence at horizon 0 but
begins to move south east from horizon 1 and appears next to Basrah in the long run. This marks
out Basrah and Diayala as among the regions most easily motivated by casualties elsewhere in the
country and with a large negative systemic influence suggesting a tendency for violence to spill-in
to these regions in particular.

Summing up our method has had success in identifying spillovers of violence between gover-
norates using a relatively naive weighting matrix and has sufficient flexibility to model regions
with very different experience of armed violence over the period within the same framework. Our
measures of network connectedness have highlighted both the most significant influencers and the
most heavily influenced and the magnitude and direction of their motivation. Our analysis also
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highlights the significant differences in the experience of coalition members in the aftermath of the
war. Areas in the north under the control of the Iraqi Kurds were able to maintain viable security
institutions and were spared significant inflows of violence against civilians from elsewhere in the
country. They appear to have had significant influence over the network of violence, however, and
our results suggest that civilian deaths would have risen across the country had there been more
insurgent deaths in these regions. In contrast, the experience of UK forces in Basrah is one of
very strong spatial spill-ins of violence from across the country and particularly from the capital,
Baghdad. Baghdad itself was under the control of US forces, acting in support of fledgling Iraqi
security forces and was particularly prone to time persistent violence enacted in retribution.

7 Concluding Remarks

The issue of cross-sectional dependence is developing very rapidly, with increasing interest being
taken in modelling growing number of datasets with both cross-section and time dimension. The
STARDL model provides a simple way of capturing dependence along both dimensions, based on
the popular ARDL model in time series. We adopt the convention of allowing parameters to be
heterogeneous across cross-section units and discuss the conditions under which these models are
stable. Under widely held conditions, we show that both the QML and the control function esti-
mator are

√
T consistent and asymptotically normally distributed. Monte Carlo evidence supports

the validity of both methods in finite samples. The counter-weight to the degree of sophistication
in any model is the subsequent difficultly in interpreting the results they give. We propose two
methods for analysing the patterns produced, and illustrate their use in analysing casualty data for
the aftermath of the 2003 Iraq war.

There remains a number of interesting challenges to be addressed. We have, throughout, as-
sumed our spatial weighting matrix to be not only known but determined exogenously, ruling out a
number of exciting areas of research in social networks and team formation. Although our control
function approach has the potential, under certain conditions, to control for this source of endo-
geneity further work is required to determine how it may be applied. Our current approach built
upon internally generated instruments is unlikely to be valid. We have also restricted ourselves
to linear effects, both in time and across space, and to modelling conditional means rather than
other parts of the conditional distribution such as medians or quantiles, which remains a topic of
ongoing research. Eventually, this project aims to develop the general econometric models that
can accommodate spatial and factor dependence, spatial heterogeneity, endogenous spatial weight
matrix as well as spatial nonlinearity in a unified framework by combining all the recent advances.
These works will be of great applicability to a variety of big datasets.
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9 Appendix

9.1 Lemmas

Lemma 1 The process yt and y∗t have finite fourth moments.
Proof In (11) the vector process yt has been written using the lags of two independent processes

with finite fourth moments. We can re-write (11) as

yt =

∞∑
`=0

B̄`x̄t−`, (47)

where B̄` =
[
B̃`, B`

]
, with typical element b̄`,ij , and x̄t−` =

[
x′t−`, ũt−`′

]′
with typical element

x̄t−`,j . By applying Hölders inequality twice,

E |x̄i,rx̄h,sx̄k,tx̄l,u| ≤ max
i,t

Ex̄4
i,t ≤ C1 <∞.

Under Assumption 5 the boundedness on q and of the elements of Π̃`, the coefficients of the lag
polynomial in B̄` are absolutely summable. Thus,

E |yi,ryj,syk,tyl,u| = E

∣∣∣∣∣
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`=0

∑
h

b̄`,ihx̄r−`,h

)( ∞∑
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∑
h

b̄`,jhx̄s−`,h

)

×
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∑
h

b̄`,khx̄t−`,h

)( ∞∑
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∑
h

b̄`,lhx̄u−`,h
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≤

∞∑
`=0

∑
h
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`=0

∑
h

∣∣b̄`,jh∣∣ ∞∑
`=0

∑
h

∣∣b̄`,kh∣∣ ∞∑
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∑
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∣∣b̄`,lh∣∣C1 ≤ C2 <∞.

The above argument may then be repeated to show

E
∣∣y∗i,ry∗j,sy∗k,ty∗l,u∣∣ = E

∣∣∣∣∣
n∑
h=1

wihyh,r

n∑
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wjhyh,s

n∑
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wkhyh,s
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wlhyh,u

∣∣∣∣∣
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wih
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wkh
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∣∣∣∣∣C2 <∞

as the rows of W are bounded in absolute row sums under Assumption 3. �
The following results are corollaries of the above and Assumptions 3 and 6.
Corollary 1 The process χit has finite fourth moments for all i.
Corollary 2 The processes that are candidates for zit discussed in 3.2.1 have finite fourth

moments for all i.

9.2 Derivatives of (12)

The first derivatives of (12) are



∂LT̄
∂φ∗0i

= −T̄ gii +
1

σ2
i

T∑
t=r+1

y∗it
(
yit − φ∗0iy∗it − θ

′
iχit

)
, so that
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,

where gij is (i, j)th element of the matrix G, where the operator vecd(A) ≡ [a11, . . . aNN ]′ extracts
the principal diagonal from a square matrix as a column vector and σ−2 = [σ−2

1 , . . . , σ−2
n ].

The individual components of the Hessian are then
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where the operator diag places its vector argument along the principal diagonal of a null, square
matrix.

9.3 Proof of Theorem 1

Consistency Consistency of the QML estimator follows Lee (2004) and Theorem 3.4 of White
(1994). It rests on establishing: (i) the stochastic equicontinuity of 1

T̄
Lc
T̄

(φ∗0); (ii) 1
T̄
Lc
T̄

(φ∗0) →p
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1
T̄
Qc(φ∗0), uniformly in φ∗0; and (iii) 1

T̄
Qc(φ∗0) is uniquely maximised at the true value φ̃

∗
0. Point

(i) is easily established by considering the two terms of Lc
T̄

(φ∗0) that depend on φ∗0, ln |S(Φ∗0)| and∑N
i=1 ln 1

T̄
(yi − φ∗i0y∗i )

′
M i (yi − φ∗i0y∗i ). The latter is clearly quadratic in φ∗i0 while the former is a

continuous function of a sum of polynomials containing powers of minimum order 0 and maximum
order 1 in any φ∗i0.
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The sums of χitwit and χitκit are weighted (linearly in φ∗0) sums of sample estimates of cross-
correlations between χitut and χitχt, respectively. As T → ∞, under our assumptions these
sample correlations converge in probability to their expectation and so the terms in {.} converge in
probability to their expectation uniformly in φ∗i0, which means that the first three terms together
converge in probability to σ̄2

i while the remainder are op(1).
Finally, to establish (iii), we express Qc

T̄
(φ∗0) = Qc1
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with ς2i (φ∗0i) ≡ tr
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. Noting that Qc2
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The function, Qc1
T̄

(φ∗0) is the expected value of the exact log likelihood function for a heterogeneous
spatial autoregressive model with normally distributed disturbances. Hence, by Jenson’s inequality,
1
T̄

[
Qc1
T̄

(φ∗0)−Qc1
T̄

(φ̃
∗
0)
]
≤ 0. Assumption 7 ensures that σ̄2

i (φ∗0i) > ς2i (φ∗0i) for all i = 1, . . . , N and

thus 1
T̄
Q2c
T̄

(φ∗0) < 0.

Asymptotic Normality Having shown identifiability and consistency, we define ξ ≡
[
φ∗′0 ,θ

′,σ2′]′,
with ξ̃ denoting the true parameter values. Since the vector function, ∂LT̄

∂ξ is continuous and dif-
ferentiable, we may write

0 =
1√
T̄

∂LT̄ (ξ̂)

∂ξ
=
∂LT̄ (ξ̃)

∂ξ
+

1√
T̄

∂2LT̄ (ξ̄)

∂ξ∂ξ′

(
ξ̂ − ξ̃

)
,

for some ξ̄ ∈ [ξ̂, ξ̃] such that ξ̄ →p ξ̃. The asymptotic distribution of the QML estimator then
follows from normalising and rearranging:√

T̄
(
ξ̂ − ξ̃

)
=

[
1

T̄

∂2LT̄ (ξ̄)

∂ξ∂ξ′

]−1
1√
T̄

∂LT̄ (ξ̃)

∂ξ
.

Under Assumption 1, ut is stationary with finite fourth moments so is χt under Assumptions 4,
5 and 6. Hence, a central limit theorem for stationary and ergodic processes can be applied to

1√
T̄

∂LT̄ (ξ̃)
∂ξ .

For ease of notation, we introduce two standardised variables. Define ζt = [ζ1t, . . . ζNt]
′, such

that ζt � σ2 ≡ ut, and denote Eζ3
it = µ3

i and Eζ4
it = µ4

i . Define Ξt = [Ξ′1t, . . . ,Ξ
′
Nt]
′ such that

Ξt � σ2 ≡ χt. We note that E(ζt) = 0 and E(ζtζ
′
t) = I. Let ℵ = E 1

T̄

T∑
t=r+1

ΞtΞ
′
t partitioned in

such a way that ℵij = E 1
T̄

T∑
t=r+1

ΞitΞ
′
jt and with block columns ℵi = E 1

T̄

T∑
t=r+1

[Ξ′1t, . . .Ξ
′
Nt]
′Ξ′it

Evaluating at the true parameter value, ξ̃ and using the relation, y∗t = G (ΘΞt + ζt)�σ2, produces
the following expressions:

1√
T̄

∂LT̄ (ξ̃)

∂φ∗i0
=

1√
T̄

T∑
t=r+1

{gi[ΘΞt + ζt]ζit − gii} , so that

1√
T̄

∂LT̄ (ξ̃)

∂φ∗0
=

1√
T̄

T∑
t=r+1

{G0[ΘΞt + ζt]� ζt − vecd(G0)}

1√
T̄

∂LT̄
∂θi

= − 1√
T̄

T∑
t=r+1

Ξitζit,

1√
T̄

∂LT̄
∂σ2

i

=
1√
T̄

1

2σ2
i

T∑
t=r+1

(ζ2
it − 1).
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The assumptions relating toXt and the absence of serial correlation in ut ensure that EΞtζ
′
t = 0

such that, as expected, E 1√
T̄

∂LT̄ (ξ̃)
∂ξ = 0. By then deploying the law of iterated expectations (see

Davidson and Mackinnon (1993, p292)), we have: E

{
T∑

t=r+1

∂Lt
∂ξ

T∑
s=r+1

∂Ls
∂ξ′

}
= 0 for t 6= s.

The covariance matrix for 1√
T̄

∂LT̄ (ξ̃)
∂ξ is based on taking the expectation of outer products, using

the result that, for i 6= j, Eζritζjt = 0, for r = 1, 2, 3.

E

{
1√
T̄

∂LT̄
∂φ∗i0

1√
T̄

∂LT̄
∂φ∗i0

}
= g2

ii + g′igi + g′iΘℵΘ′gi + g2
iiµ

4
i + 2µ3

i giig
′
iΘE

{
1

T̄

T∑
t=r+1

Ξit

}
,

E

{
1√
T̄

∂LT̄
∂φ∗i0

1√
T̄

∂LT̄
∂φ∗′j0

}
= gijgji, i 6= j,

E

{
1√
T̄

∂LT̄
∂φ∗i0

1√
T̄

∂LT̄
∂θ′i

}
= g′iΘℵi + µ3

i giiE

{
1

T̄

T∑
t=r+1

Ξ′it

}
,

E

{
1√
T̄

∂LT̄
∂φ∗i0

1√
T̄

∂LT̄
∂σ2

i

}
=

1

2σ2
i

[
µ3
i g
′
iΘE

{
1

T̄

T∑
t=r+1

Ξt

}
+ gii(µ

4
i − 1)

]
,

E

{
1√
T̄

∂LT̄
∂θi

1√
T̄

∂LT̄
∂θ′i

}
= ℵii,

E

{
1√
T̄

∂LT̄
∂θi

1√
T̄

∂LT̄
∂σ2

i

}
=

µ3
i

2σ2
i

E

{
1

T̄

T∑
t=r+1

Ξit

}
, and finally

E

{
1√
T̄

∂LT̄
∂σ2

i

1√
T̄

∂LT̄
∂σ2

i

}
=

1

4σ2
i

(µ4
i − 1).

At the same time the elements of H ≡ − 1
T̄
E ∂2LT̄
∂ξ∂ξ′ can be written

− 1

T̄
E

∂2LT̄
∂φ∗0i∂φ

∗
0i

= gijgji + g′igi + g′iΘℵΘ′gi,

− 1

T̄
E

∂2LT̄
∂φ∗0i∂φ

∗
0j

= gijgji, i 6= j,

− 1

T̄
E
∂2LT̄
∂φ∗0iθ

′
i

= g′iΘℵi,

− 1

T̄
E

∂2LT̄
∂φ∗0i∂σ

2
i

=
gii
σ2
i

,

− 1

T̄
E
∂2LT̄
∂θi∂θ

′
i

= ℵii, and finally

− 1

T̄
E

∂2LT̄
∂σ2

i ∂σ
2
i

=
1

2σ4
i

,

with all other elements null.
It is easily seen that when ut is normally distributed with µ3

i = 0 and Eµ4
i = 3, ∀i, then QML

estimation become exact maximum likelihood estimation and the information equality holds. �
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9.4 Proof of Theorem 2

We make use of the following expression for the inverse of a partitioned matrix, e.g. Horn and
Johnson (1985, p18),13

[
A11 A12

A21 A22

]−1

=

[ (
A11 −A12A

−1
22 A21

)−1 −
(
A11 −A12A

−1
22 A21

)−1
A12A

−1
22

−
(
A22 −A21A

−1
11 A12

)−1
A21A

−1
11

(
A22 −A21A

−1
11 A12

)−1

]
.

When applied to the least square formula for equation (21) we have that(
β̂i
ρ̂i

)
=

[ (
K ′iM v̂iKi

)−1 −
(
K ′iM v̂iKi

)−1
K ′iv̂i

(
v̂′iv̂i

)−1

−
(
v̂′iMKi

v̂i
)−1

v̂′iKi

(
K ′iKi

)−1 (
v̂′iMKi

v̂i
)−1

] [
K ′iyi
v̂′iyi

]
,

with the result that (
β̂i
ρ̂i

)
=

[ (
K ′iM v̂iKi

)−1
K ′iM v̂iyi(

v̂′iMKi
v̂i
)−1

v̂′iMKi
yi

]
, (48)

whereKi = (y∗i ,χi), y
∗
i =

(
y∗i,r+1, y

∗
i,r+1, . . . , y

∗
i,T

)′
, χ′i =

(
χ′i,r+1,χ

′
i,r+1, . . . ,χ

′
i,T

)′
, v̂∗i =

(
v̂∗i,r+1, v̂

∗
i,r+1, . . . , v̂

∗
i,T

)′
and for any matrix A of full column rank we define MA ≡ I − PA and PA ≡ A(A′A)−1A as
the projection matrix into the column space of A. denotes the (t − r)’th row of the matrix X̃i =(
X̃
′
i,r+1, ..., X̃

′
i,T

)′
, Note that the annihilation matrix for v̂i, [M v̂i ] = [I−Mziy

∗
i (y
∗′
i Mziy

∗
i )
−1y∗′i Mzi].

Since χi lies in the column space of zi, [M v̂i ]χi = χi, whereas

[M v̂i ]y
∗
i = [I −Mziy

∗
i (y
∗′
i Mziy

∗
i )
−1y∗′i Mzi]y

∗
i = P ziy

∗
i = y∗i − v̂i,

the fitted values from regression (18). Hence M v̂iKi = X̃i. Substituting equation (1) into the top
of (48) and rearranging

√
T̄
(
β̂i − βi

)
=

(
1

T̄
K ′iM v̂iKi

)−1
1√
T̄
K ′iM v̂iui =

(
1

T̄
X̃
′
iX̃i

)−1
1√
T̄
X̃
′
iui. (49)

Following Assumptions 1, 6 and 7’ and the corollaries to Lemma 1,

plim T̄−1
T∑

t=r+1

zitz
′
it = C1,plim T̄−1

T∑
t=r+1

zity
∗
it = c2,plim T̄−1

T∑
t=r+1

y∗2it = c3,

where C1 is a finite L×L positive definite matrix, c2 a finite L vector and c3 is a positive constant,
in the case that zit consists of time and or spatial lags of χit. If external variables are used in
the control regression, however, then further assumptions are needed on their moments in place of
Corollary 2. The sequence x̃i,tui,t is a stationary, ergodic martingale difference sequence with finite
fourth moments and denoting

plim T̄−1
T̄∑

t=r+1

x̃i,tx̃
′
i,t = C4,

13The top line here is a translation of the bottom given in the text.
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where C4 is a finite (L1 + 1)× (L1 + 1). Using Chebyshev’s inequality it follows that

plim T̄−1
T∑

t=r+1

x̃i,tx̃
′
i,tu

2
it = C4Eu

2
it = σ2

iC4.

Then following White (1984) Corollary 5.26

T̄−1/2
T̄∑

t=r+1

x̃i,tuit →d N
(
0, σ2

iC4

)
.

Since β̂i →p βi, and v̂it →p vit the pseudo-residuals from (21), ûit = êit+v̂itρ̂ can be used to provide

a consistent estimator of σ2
i , σ̂2

i = T̄−1
∑T
t=r+1 û

2
it. The consistency and asymptotic normality of

the instrumental variables estimator then follow from White (1984, 5.27). �
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Civilian war casualties by governorates in the 2003 Iraq war 

 

Figure 1: The governorates of Iraq.
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Figure 2: Dynamic Multipliers: y∗ (dotted); x (solid) and x∗ (dashed).
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Figure 3: Connectedness measures: direct (solid); spill-in (dashed); spill-out (dash/dotted); net
(dotted).
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Figure 4: Heatmap at horizon 0.
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Figure 5: Cumulative heatmap at horizon 40.
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Figure 6: Network analysis at horizon 0.
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Figure 7: Network analysis at horizon 1.
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Figure 8: Network analysis at horizon 40.
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